首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli glpT gene encodes a transport protein that mediates uptake of sn-glycerol-3-phosphate. This permease is a member of a class of bacterial organophosphate permeases which transport substrates by antiport with inorganic phosphate. The glpT gene product, probably an oligomer of a single polypeptide chain, is thought to span the cytoplasmic membrane several times, as predicted by the hydropathic profile. Protein fusions, in which varying lengths of the amino-terminal end of the permease is attached to alkaline phosphatase (phoA) and to beta-galactosidase (lacZ) were constructed. On the assumption that phoA fusions only exhibit high enzymatic activity when fused to extra-cytoplasmic regions of the target protein, whereas lacZ fusions will only be active when the beta-galactosidase portion is attached to cytoplasmic domains of the target protein, the activities of the fusions were used to test a two-dimensional model for the permease. The model proposes that GlpT contains 12 transmembrane segments divided by a larger cytoplasmic region. Despite some limitation caused by hot-spot sites of transpositions, the TnphoA approach was consistent with the model. In contrast, we feel that the enzymatic activity of lacZ fusions is only a limited parameter for studying the topology of a complex membrane protein.  相似文献   

2.
The Tsr protein of Escherichia coli is a chemosensory transducer that mediates taxis toward serine and away from certain repellents. Like other bacterial transducers, Tsr spans the cytoplasmic membrane twice, forming a periplasmic domain of about 150 amino acids and a cytoplasmic domain of about 300 amino acids. The 32 N-terminal amino acids of Tsr resemble the consensus signal sequence of secreted proteins, but they are not removed from the mature protein. To investigate the function of this N-terminal sequence in the assembly process, we isolated translational fusions between tsr and the phoA and lacZ genes, which code for the periplasmic enzyme alkaline phosphatase and the cytoplasmic enzyme beta-galactosidase, respectively. All tsr-phoA fusions isolated code for proteins whose fusion joints are within the periplasmic loop of Tsr, and all of these hybrid proteins have high alkaline phosphatase activity. The most N-terminal fusion joint is at amino acid 19 of Tsr. Tsr-lacZ fusions were found throughout the tsr gene. The beta-galactosidase activity of the LacZ-fusion proteins varies greatly, depending on the location of the fusion joint. Fusions with low activity have fusion joints within the periplasmic loop of Tsr. The expression of these fusions is most likely reduced at the level of translation. In addition, one of these fusions markedly reduces the export and processing of the periplasmic maltose-binding protein and the outer membrane protein OmpA, but not of intact PhoA or of the outer membrane protein LamB. A temperature-sensitive secA mutation, causing defective protein secretion, stops expression of new alkaline phosphatase activity coded by a tsr-phoA fusion upon shifting to the nonpermissive temperature. The same secA mutation, even at the permissive temperature, increases the activity and the level of expression of LacZ fused to the periplasmic loop of Tsr relative to a secA+ strain. We conclude that the assembly of Tsr into the cytoplasmic membrane is mediated by the machinery responsible for the secretion of a subset of periplasmic and outer membrane proteins. Moreover, assembly of the Tsr protein seems to be closely coupled to its synthesis.  相似文献   

3.
4.
A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.  相似文献   

5.
The Escherichia coli Tat system mediates Sec-independent export of protein precursors bearing twin arginine signal peptides. Formate dehydrogenase-N is a three-subunit membrane-bound enzyme, in which localization of the FdnG subunit to the membrane is Tat dependent. FdnG was found in the periplasmic fraction of a mutant lacking the membrane anchor subunit FdnI, confirming that FdnG is located at the periplasmic face of the cytoplasmic membrane. However, the phenotypes of gene fusions between fdnG and the subcellular reporter genes phoA (encoding alkaline phosphatase) or lacZ (encoding beta-galactosidase) were the opposite of those expected for analogous fusions targeted to the Sec translocase. PhoA fusion experiments have previously been used to argue that the peripheral membrane DmsAB subunits of the Tat-dependent enzyme dimethyl sulphoxide reductase are located at the cytoplasmic face of the inner membrane. Biochemical data are presented that instead show DmsAB to be at the periplasmic side of the membrane. The behaviour of reporter proteins targeted to the Tat system was analysed in more detail. These data suggest that the Tat and Sec pathways differ in their ability to transport heterologous passenger proteins. They also suggest that caution should be observed when using subcellular reporter fusions to determine the topological organization of Tat-dependent membrane protein complexes.  相似文献   

6.
The gene hoxN of Alcaligenes eutrophus encodes a membrane protein with a molecular mass of 33.1 kDa that mediates energy-dependent uptake of nickel ions. Based on the hydrophobicity of the HoxN protein five, six, or seven transmembrane segments were predicted, depending on the algorithm used for computer analysis. To distinguish between these possibilities varying segments of the amino-terminal end of the transporter were fused to the Escherichia coli enzymes aikaline phosphatase (PhoA) or β-galactosidase (LacZ). The enzymatic activity of 16 HoxN-PhoA and 15 HoxN-LacZ fusions was determined. On the assumption that PhoA fusions only exhibit high activity when fused to periplasmic domains of the target, while LacZ fusions are only active when oriented towards the cytoplasm, a two-dimensional model for the nickel transporter was developed. This model proposes that HoxN contains four periplasmic and four cytoplasmic regions, and seven transmembrane helices. The amino terminus is located in the cytoplasm, and the carboxyl terminus faces the periplasm.  相似文献   

7.
The ProW protein, located in the inner membrane of Escherichia coli, has a very unusual topology with a 100-residue-long N-terminal tail protruding into the periplasmic space. We have studied the mechanism of membrane translocation of the periplasmic tail by analysing ProW-PhoA and ProW-Lep fusion proteins, both in wild-type cells and in cells with an impaired sec machinery. Our results show that the translocation efficiency is not affected by treatments that compromise the SecA and SecY functions, but that translocation is completely blocked by dissipation of the proton motive force or by the introduction of extra positively charged residues into the N-terminal tail. This suggests that the sec machinery can act properly only on domains located on the C-terminal side of a translocation signal, and that the N-terminal tail is driven through the membrane by a mechanism that involves the proton motive force.  相似文献   

8.
Escherichia coli TonB protein is an energy transducer, coupling cytoplasmic membrane energy to active transport of vitamin B12 and iron-siderophores across the outer membrane. TonB is anchored in the cytoplasmic membrane by its hydrophobic amino terminus, with the remainder occupying the periplasmic space. In this report we establish several functions for the hydrophobic amino terminus of TonB. A G-26-->D substitution in the amino terminus prevents export of TonB, suggesting that the amino terminus contains an export signal for proper localization of TonB within the cell envelope. Substitution of the first membrane-spanning domain of the cytoplasmic membrane protein TetA for the TonB amino terminus eliminates TonB activity without altering TonB export, suggesting that the amino terminus contains sequence-specific information. Detectable TonB cross-linking to ExbB is also prevented, suggesting that the two proteins interact primarily through their transmembrane domains. In vivo cleavage of the amino terminus of TonB carrying an engineered leader peptidase cleavage site eliminates (i) TonB activity, (ii) detectable interaction with a membrane fraction having a density intermediate to those of the cytoplasmic and outer membranes, and (iii) cross-linking to ExbB. In contrast, the amino terminus is not required for cross-linking to other proteins with which TonB can form complexes, including FepA. Additionally, although the amino terminus clearly is a membrane anchor, it is not the only means by which TonB associates with the cytoplasmic membrane. TonB lacking its amino-terminal membrane anchor still remains largely associated with the cytoplasmic membrane.  相似文献   

9.
We have employed the technique of gene fusion to fuse the LacZ gene encoding the cytoplasmic enzyme beta-galactosidase with the malE gene encoding the periplasmic maltose binding protein (MBP). Strains were obtained which synthesize malE-lacZ hybrid proteins of various sizes. These proteins have, at their amino terminus, a portion of the MBP and at their carboxyl terminus, enzymatically active beta-galactosidase. When the hybrid protein includes only a small, amino-terminal portion of the MBP, the hybrid protein residues in the cytoplasm. When the hybrid protein contains enough of the MBP to include an intact MBP signal sequence, a significant portion of the hybrid protein is found in the cytoplasmic membrane, suggesting that secretion of the hybrid protein has been initiated. However, in no case is the hybrid protein secreted into the periplasm, even when the hybrid protein includes almost the entire MBP. In the latter case, the synthesis and attempted export of the hybrid protein interferes with the export of at least certain normal envelope proteins, which accumulate in the cell in their precursor forms, and the cell dies. These results suggest that a number of envelope proteins may be exported at a common site, and that there are only a limited number of such sites. Also, these results indicate that it is not sufficient to simply attach an amino-terminal signal sequence to a polypeptide to assure its export.  相似文献   

10.
A theoretical model for the cytoplasmic membrane topology of the Rhodobacter capsulatus PucC protein was derived and tested experimentally with pucC'::pho'A gene fusions. The alkaline phosphatase (AP) activities of selected fusions were assayed, and the resultant pattern of high and low activity was compared with that of the theoretical model. High AP activity correlated well with fusion joints located in regions predicted to be periplasmic, and most fusions in predicted cytoplasmic loops yield approximately 1/20th as much activity. Replacement of pho'A with lac'Z in nine of the fusions confirmed the topology, as beta-galactosidase activities were generally reciprocal to the corresponding AP activity. On the basis of the theoretical analysis and the information provided by the activities of fusions, a model for PucC topology in which there are 12 membrane-spanning segments and both the N and C termini are located in the cytoplasm is proposed. Translationally out-of-frame pucC::phoA fusions were expressed in an R. capsulatus delta pucC strain. None of the fusions missing only one or two of the proposed C-terminal transmembrane segments restored the wild-type phenotype, suggesting that the C terminus of PucC is important for function.  相似文献   

11.
Protein fusion with the Escherichia coli alkaline phosphatase is used extensively for the analysis of the topology of membrane proteins. To study the topology of the Agrobacterium T-DNA transfer proteins, we constructed a transposon, Tn 3phoA . The transposon mobilizes into plasmids at a high frequency, is stable after transposition, can produce phoA translational fusions and can be used for the analysis of protein topology directly in the bacterium of interest. For studies on the DNA transfer proteins, an Agrobacterium strain deficient in phoA under our experimental conditions was constructed by chemical mutagenesis. A plasmid containing virB and virD4 was used as a target for mutagenesis. Twenty-eight unique phoA -positive clones that mapped to eight virB genes were isolated. Multiple insertions throughout VirB1, VirB5, VirB7, VirB9 and VirB10 indicated that these proteins primarily face the periplasm. Insertions in VirB2, VirB6 and VirB8 allowed the identification of their periplasmic domains. No insertions were found in VirB3, VirB4 and VirB11. These proteins either lack or have a short periplasmic domain. No insertions mapped to VirD4 either. To study VirD4 topology, targeted phoA fusions and random lacZ fusions were constructed. Analysis of the fusion proteins indicated that VirD4 contains a single periplasmic domain near the N-terminus, and most of the protein lies in the cytoplasm. A hypothetical model for the T-DNA transport pore is presented.  相似文献   

12.
A series of fusions between the gene for the Klebsiella pneumoniae secreted lipoprotein pullulanase (pulA) and the genes for cytoplasmic beta-galactosidase (lacZ) or periplasmic alkaline phosphatase (phoA) were created by transposon mutagenesis using mini-MudII1681 or TnphoA, respectively. The hybrid genes were expressed in Escherichia coli K-12 with or without the K. pneumoniae genes that promote pullulanase secretion in E. coli. We characterized seven different pulA-lacZ gene fusions encoding hybrid polypeptides containing from 14 to c. 1060 residues of pro-pullulanase. All but the smallest hybrid were fatty acylated and were toxic to producing cells, causing the accumulation of precursors of other exported proteins. Four different pulA-phoA gene fusions encoded hybrids with alkaline phosphatase activity. All four hybrids were fatty acylated, but were not toxic. Although the hybrids were apparently membrane-associated, they were not secreted into the medium either by E. coli carrying pullulanase secretion genes or by K. pneumoniae. Immunofluorescence tests indicated that the pullulanase secretion genes promoted the localization of one of these hybrids to the outer face of the E. coli outer membrane, which may have important implications for the design of live vaccine strains and of immobilized enzymes.  相似文献   

13.
The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells.  相似文献   

14.
Hydropathy profile analyses of the amino acid sequence of the quorum-sensing hybrid histidine kinase LuxN of Vibrio harveyi predict a periplasmic location of the N terminus. To test this, two-hybrid proteins consisting of LuxN and an N-terminally fused maltose-binding protein with or without a leader sequence were analyzed with regard to the enzymatic activities of LuxN, protease accessibility, and complementation of an Escherichia coli malE mutant. The results strongly support a periplasmic location of the N terminus, implying that LuxN is anchored with nine transmembrane domains in the cytoplasmic membrane.  相似文献   

15.
The malF gene product is an inner membrane component of the maltose transport system in Escherichia coli. Some gene fusions between malF and lacZ (encoding the normally cytoplasmic enzyme beta-galactosidase) produce hybrid proteins which are membrane-bound while other fusions produce hybrid proteins which are cytoplasmic (Silhavy, T. J., Casadaban, M. J., Shuman, H. A., and Beckwith, J. R. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 3423-3427). To further analyze the localization properties of the different classes of fusion proteins and of the intact MalF protein, we have obtained the DNA sequence of 5 malF-lacZ fusions and the wild type malF gene. From the predicted amino acid sequence, MalF protein contains 514 amino acids and has a molecular weight of 56,947. Analysis of the hydropathic character of MalF using the Kyte-Doolittle assignments (Kyte, J., and Doolittle, R. F. (1982) J. Mol. Biol. 157, 105-132), indicates that the protein may have 2 or 3 amino-terminal membrane-spanning segments and 4 or 5 carboxy-terminal membrane-spanning segments separated by a region of 181 hydrophilic residues. Localization properties of the different fusion proteins correspond with degree of hydrophobicity. By sequencing upstream from malF, the malE-malF intercistronic region was found to be 153 base pairs in length and to contain inverted repeats, homologous to intercistronic repeats of many other operons. Further analysis of this region may help in understanding the observed step-down in synthesis of the MalF protein.  相似文献   

16.
The O-antigen translocase, Wzx, is involved in translocation of bacterial polysaccharide repeat units across the cytoplasmic membrane, and is an unusually diverse, highly hydrophobic protein, with high numbers of predicted alpha-helical transmembrane segments (TMS). The Salmonella enterica serovar Typhimurium Group B O-antigen Wzx was an ideal candidate for topological study as the O-antigen gene cluster is one of only a few that have been well characterized. The topology profile prediction for this protein was determined using five programs, with different recognition parameters, which consistently predict that 12 TMS are present. A membrane topology model was constructed by analysis of lacZ and phoA gene fusions at randomly selected and targeted fusion sites within wzx. Enzyme activity of these, and full-length C-terminal fusion proteins, confirmed the 12-TMS topology for this Wzx, and also indicated that the C-terminus was located within the cytoplasm, which is consistent with the predicted topology.  相似文献   

17.
18.
The extracellular glucosyltransferases (GTFs) of Streptococcus mutans are not secreted into the periplasmic space of Escherichia coli when the corresponding gtf genes are isolated in the latter organism. The utilization of both deletion analysis and gtfB: phoA fusions indicate that the signal sequences of the GTFs are functional in E. coli. However, these results further suggest that amino acid sequences present in the carboxyl terminus of the GTFs inhibit secretion through the cytoplasmic membrane in E. coli.  相似文献   

19.
The gene IV protein of filamentous bacteriophages is an integral membrane protein required for phage assembly and export. A series of gene IV::phoA fusion, gene IV deletion, and gene IV missense mutations have been isolated and characterized. The alkaline phosphatase activity of the fusion proteins suggests that pIV lacks a cytoplasmic domain. Cell fractionation studies indicate that the carboxy-terminal half of pIV mediates its assembly into the membrane, although there is no single, discrete membrane localization domain. The properties of gene IV missense and deletion mutants, combined with an analysis of the similarities between pIVs from various filamentous phage and related bacterial export-mediating proteins, suggest that the amino-terminal half of pIV consists of a periplasmic substrate-binding domain that confers specificity to the assembly-export system.  相似文献   

20.
The mtr gene of Escherichia coli K-12 encodes an inner membrane protein which is responsible for the active transport of trypotophan into the cell. It has been proposed that the Mtr permease has a novel structure consisting of 11 hydrophobic transmembrane spans, with a cytoplasmically disposed amino terminus and a carboxyl terminus located in the periplasmic space (J.P. Sarsero, P. J. Wookey, P. Gollnick, C. Yanofsky, and A.J. Pittard, J. Bacteriol. 173:3231-3234, 1991). The validity of this model was examined by the construction of fusion proteins between the Mtr permease and alkaline phosphatase or beta-galactosidase. In addition to the conventional methods, in which the reporter enzyme replaces a carboxyl-terminal portion of the membrane protein, the recently developed alkaline phosphatase sandwich fusion technique was utilized, in which alkaline phosphatase is inserted into an otherwise intact membrane protein. A cluster of alkaline phosphatase fusions to the carboxyl-terminal end of the Mtr permease exhibited high levels of alkaline phosphatase activity, giving support to the proposition of a periplasmically located carboxyl terminus. The majority of fusion proteins produced enzymatic activities which were in agreement with the positions of the fusion sites on the proposed topological model of the permease. The synthesis of a small cluster of hybrid proteins, whose enzymatic activity did not agree with the location of their fusion sites within putative transmembrane span VIII or the preceding periplasmic loop, was not detected by immunological techniques and did not necessitate modification of the proposed model in this region. Slight alterations may need to be made in the positioning of the carboxyl-terminal end of transmembrane span X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号