首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Damage of leaf spot, caused by Mycosphaerella fragariae and gray mold also called Botrytis fruit rot, caused by Botrytis cinerea, average fruit weight and yield were evaluated with regard to cultural methods over 2years. Leaf spot damage decreased significantly by around 90% due to leaf sanitation (removal of dead and leaf spot infected leaves in early spring) and by 50% due to plantation in a one-row-system instead of a two-row-system. When all leaves including the healthy green ones were removed in early spring, average fruit weight decreased significantly by 10%. Fruit sanitation – the third treatment – did not influence any of the measured parameters. Neither leaf sanitation nor fruit sanitation (removal of damaged fruits during harvest) reduced B. cinerea damage significant. Only the combination of a one-row-system, leaf sanitation and fruit sanitation almost halved (not significantly) B. cinerea damage in the first crop year compared to a two-row-system without leaf and fruit sanitation. B. cinerea damage correlated significantly and positively with the biomass of plants by R2= 0.47. According to this study and the cited literature it is suggested for humid Central European conditions to apply a one-row-system combined with leaf sanitation in early spring and fruit sanitation during harvest if fruit density is high, to reduce the risk of damages in larger dimension caused by M. fragariae and B. cinerea.  相似文献   

2.
Numerous studies have shown that early-fruit removal enhances vegetative growth and development of cotton (Gossypium hirsutum L.). However, few studies have examined changes in leaf senescence and endogenous hormones due to fruit removal. The objective of this study was to determine the correlation between some endogenous phytohormones, particularly the cytokinins and abscisic acid (ABA), and leaf senescence following fruit removal. Cotton was grown in pots and in the field during 2005 and 2006. Two early-fruiting branches were excised from plants at squaring to form the fruit removal treatment while the non-excised plants served as control. Plant biomass, seed cotton yield, cytokinins and ABA levels in main-stem leaves and xylem sap as well as main-stem leaf photosynthetic rate (Pn) and chlorophyll (Chl) concentration were determined after removal or at harvest. Fruit removals increased the leaf area, root and shoot dry weight and plant biomass at 35 days after removal (DAR), whether in potted or field-grown cotton; under field conditions, it also improved plant biomass and seed cotton yield at harvest. The Pn and Chl concentration in excised plants were significantly higher than in control plants from 5 to 35 DAR, suggesting that fruit removal considerably delayed leaf senescence. Fruit-excised plants contained more trans-zeatin and its riboside (t-Z + t-ZR), dihydrozeatin and its riboside (DHZ + DHZR), and isopentenyladenine and its riboside (iP + iPA) but less ABA in both main-stem leaves and xylem sap than control plants from 5 to 35 DAR. These results suggest that removal of early fruiting branches delays main-stem leaf senescence, which can be attributed to increased cytokinin and/or reduced ABA. Cytokinin and ABA are involved in leaf senescence following early fruit removal.  相似文献   

3.
Three sprays, maneb in water applied by hydraulic knapsack sprayer and maneb in an oil/water emulsion or an oil/water emulsion alone applied by mistblower were compared for the control of black leaf streak disease of banana caused by Mycosphaerella sp.
Although there were no differences in yield in the 'plant' crop, maneb, especially as a water-based spray, resulted in much better disease control and leaf survival. Oil seemed to have an adverse effect on fruit quality but not on plant growth.
Since it is unlikely that oil alone will adequately control the disease in ratoon crops fungicides may be necessary.  相似文献   

4.
The aim of the study was to examine the response of pear (Pyrus communis L.) trees to soil and foliar applications of boron (B). The experiment was carried out during 2000–2001 in a commercial orchard in Central Poland on mature `Conference' pear trees grafted on Pyrus communis var. caucasica seedlings planted at a spacing of 4 × 2.5 m on a sandy loam soil with a low hot water-extractable B status. Annually, foliar sprays with B were applied. (i) before full bloom (at green and white bud stage, and when 1–5% of flowers was at full bloom), (ii) after flowering (at petal fall, and 7 and 14 days after the end of flowering), or (iii) postharvest in fall (approximately 6 weeks before leaf fall). Spray treatments involved application of B at a rate of 0.2 kg ha–1 in spring or 0.8 kg ha–1 in fall. Additionally, other trees were supplied with soil-applied B at the bud break stage at a rate of 2 kg ha–1. Trees untreated with B served as the control. The results revealed that foliar applications of B before full bloom or after harvest increased fruit set and fruit yield. Tree vigor, mean fruit weight, firmness, soluble solids concentration and titratable acidity of fruits at harvest were not affected by B treatments. Foliar B sprays before full bloom or after harvest increased B concentrations in flowers, and both leaves and fruitlets at 40 days after flowering. Only the foliar treatments after flowering and soil fertilization with B increased the content of this microelement in fruit and leaves at 80 and 120 days after full bloom. Foliar B application before full bloom or after harvest increased calcium (Ca) in fruitlets at 40 days after full bloom, in fruit, and in leaves at 80 and 120 days after full bloom. Nitrogen (N), phosphorus (P), potassium (K), and magnesium (Mg) in plant tissues were not affected by B fertilization. After storage, and also after the ripening period, fruits from the trees sprayed with B before full bloom or after harvest had higher firmness and titratable acidity than those from the control trees. After the ripening period, fruits from the trees sprayed with B before full bloom or after harvest had lower membrane permeability and were less sensitive to internal browning than the control fruits. These findings indicate that prebloom and postharvest B sprays are successful in increasing pear tree yielding and in improving fruit storability under the conditions of low B availability in the soil.  相似文献   

5.
The disease control efficacy of quarantine heat treatments developed for fruit fly disinfestation in mangoes cv. Kensington Pride was evaluated in this study. Heat was applied using high humidity (>95% r.h.) hot air (HHHA) at temperatures ranging from 47–49°C. Anthracnose, caused by Colletotrichum gloeosporioides, was well controlled in mangoes heated to a core temperature of 46°C, 47°C or 48°C for 24, 10 or 8 min respectively, prior to ripening at 23°C for 16 days. Stem end rot, caused by Dothiorella dominicana and Lasiodiplodia theobromae, was not satisfactorily controlled by these treatments. In a subsequent experiment, fruit were immersed in a hot benomyl (0.5 g a.i. litre“1 at 52°C for 5 min) or unheated prochloraz (0.25 ml a.i. litre1 at 28°C for 30 s) dip before or after the application of HHHA (core temperature of 47°C for 10 min). During storage at 23°C for 15 days, the incidence of stem end rot was reduced by HHHA alone, although immersion in hot benomyl either before or after HHHA treatment greatly improved stem end rot control. HHHA treatment (core temperature of 46.5°C for 10 min) alone reduced the incidence of anthracnose in mangoes stored at 13°C for 14 days prior to ripening at 22°C, although a combination treatment consisting of HHHA and either hot benomyl or unheated prochloraz gave complete control of anthracnose under these storage conditions. HHHA treatment alone gave no control of stem end rot in mangoes stored at 13°C prior to ripening at 22°C. A supplementary hot benomyl treatment was required for acceptable control of this disease in cool-stored mangoes. The development of yellow skin colour in fruit was accelerated by HHHA treatment.  相似文献   

6.
Overwintered adult carrot psyllids [Trioza apicalis Förster (Homoptera: Psylloidea: Triozidae)] damage carrot [(Daucus carota ssp. sativum L.) (Apiaceae)] seedlings by phloem feeding on the leaves. The aim of this study was to investigate the carrot root and shoot growth in relation to carrot psyllid density during early growth stages. One, two, or three carrot psyllids were allowed to feed on carrot seedlings for 3 days. Leaf damage was measured at the 8‐leaf stage, and root, leaf fresh weight, and number of true leaves were measured at harvest. Both the age of the carrot seedling at infestation and the psyllid density had a significant effect on leaf damage at the 8‐leaf stage: seedlings damaged at the cotyledon stage exhibited more leaf damage than seedlings damaged at the 1‐leaf stage. A higher psyllid density significantly reduced the carrot root weight at harvest. The significant interaction of psyllid density with seedling age indicates that differently aged carrot seedlings responded differently to feeding: one psyllid feeding for 3 days at the cotyledon stage caused a significant yield loss, whereas three psyllids were needed to cause the same impact at the 1‐leaf stage. Carrot leaf weight at harvest was not reduced by carrot psyllid feeding: leaves recovered from the damage but roots did not. Our results confirm the farmers’ observations that a trap replacement period of 1 week for carrot psyllid monitoring is too long, especially at the cotyledon stage. Severe leaf discolouration on damaged carrots was observed at harvest. The possible reasons for this discolouration, such as toxin excreted in psyllid saliva or plant pathogenic mycoplasma infection, are discussed.  相似文献   

7.
This investigation was performed to study the influence of benomyl on photosynthetic pigments and enzymes in soybean leaves. Chlorophyll and pheophytin levels were reduced by benomyl 45 days after greening. These results indicate that chlorophylla andb, and pheophytin must be controlled by benomyl. SDS-PAGE analysis showed that 50 and 14.5 kD polypeptides represented as the large and small subunits of rubisco. In the both of these subunits, the band intensity of the control was significantly higher than that after benomyl treatment, indicating that these two subunits are affected by benomyl. Benomyl strongly inhibited both the activity and content of rubisco as its concentration was gradually increased. However, it remains unclear whether this reduction of rubisco level was due to a reduced level of rubisco activase. Two major polypeptides of 46 and 42 kD were identified as rubisco activase subunits by SDS-PAGE. The intensity of these two bands was shown to be higher in the control than after benomyl treatment. These results indicate that the rubisco decrease resulting from increased benomyl concentrations was caused by rubisco activase. A significant decrease in both the activity and content of rubisco activase by benomyl was also observed. These results suggest that the decrease in rubisco level caused by benomyl is accompanied by a decrease in both the activity and content of rubisco activase.  相似文献   

8.
By delaying harvest of fruit bunches of the oil palm Elaeis guineensis Jacq., an increase in their oil content can be obtained, but this is accompanied by increased harvesting costs and lower oil quality, as the number of detached fruit increases. Treatment of ripening bunches with auxins, gibberellic acid, or ethephon retards fruit abscission, and harvest can be delayed by up to 5 days without increase in the number of detached fruit. Indications are that oil yield might increase by more than 5% during this period, without change in harvesting costs or oil quality.  相似文献   

9.
Isolates of Botrytis cinerea were obtained from tomatoes in several localities in the West Scotland. Some isolates grew on agar containing 100 mg/1 benomyl (carbendazim-tolerant), while others did not (carbendazim-sensitive). Pot-grown tomato plants treated with benomyl and other carbendazim-generating fungicides, applied either as sprays or soil drenches, were inoculated on the leaf scars with some of these isolates. On treated plants the carbendazim-tolerant isolates formed lesions which were about as large as those on untreated plants. Sensitive isolates formed much smaller lesions on treated plants. There was evidence that the increase in lesion size during the period 7–14 days after inoculation with a carbendazim-sensitive isolate was less on plants sprayed with benomyl or carbendazim with added mineral oil (2% Actipron) than on plants to which the fungicides alone had been applied. No such effect was recorded with thio-phanate-methyl. There was also an indication that the addition of Actipron to a benomyl spray improved the effect of the fungicide against two tolerant isolates, though there was no effect on the relative increase in lesion size during the second week after inoculation. In two tests the addition of 2% and 4% Actipron to benomyl soil drenches did not improve the level of leaf scar lesion control.  相似文献   

10.
Many studies have shown that root–shoot imbalance influences vegetative growth and development of cotton (Gossypium hirsutum L.), but few have examined changes in leaf senescence and endogenous hormones due to stem girdling. The objective of this study was to determine the correlation between some endogenous phytohormones, particularly cytokinins and abscisic acid (ABA), and leaf senescence following stem girdling. Field-grown cotton plants were girdled on the main stem 5 days after squaring (DAS), while the non-girdled plants served as control. Plant biomass, seed cotton yield, main-stem leaf photosynthetic (Pn) rate, chlorophyll (Chl) and malondialdehyde (MDA) concentrations, as well as levels of cytokinins and ABA in main-stem leaves and xylem sap were determined after girdling or at harvest. Main-stem girdling decreased the dry root weight and root/shoot ratio from 5 to 70 days after girdling (DAG) and reduced seed cotton yield at harvest. Main-stem leaf Pn and Chl concentration in girdled plants were significantly lower than in control plants. Much higher levels of MDA were observed in main-stem leaves from 5 to 70 DAG, suggesting that stem girdling accelerated leaf senescence. Girdled plants contained less trans-zeatin and its riboside (t-Z + t-ZR), dihydrozeatin and its riboside (DHZ + DHZR), and isopentenyladenine and its riboside (iP + iPA), but more ABA than control plants in both main-stem leaves and xylem sap. These results suggested that main-stem girdling accelerated leaf senescence due to reduced levels of cytokinin and/or increased ABA. Cytokinin and ABA are involved in leaf senescence following main-stem girdling.  相似文献   

11.
When tomato leaves were sprayed with 0.1% emulsified canola oil, corn oil, grape seed oil, peanut oil, safflower oil, soya bean oil or sunflower oil, the severity of powdery mildew caused by Oidium neolycopersici was greatly reduced. Among these edible oils tested, sunflower oil was the most effective in the control of powdery mildew. When sprayed with 0.5% sunflower oil, powdery mildew on tomato leaves was reduced to a negligible level. Sunflower oil applied to halves of upper leaf surface did not induce resistance against the pathogen in the non‐treated halves. When applied to halves of lower leaf surface, it also failed to reduce the severity of powdery mildew on the upper leaf surface right above the treated area indicating that control of the powdery mildew by sunflower oil did not result from activation of host defence mechanisms. Scanning electron microscopy showed that control of powdery mildew with sunflower oil resulted mainly from the inhibition of conidial germination and suppression of mycelial growth of the pathogen.  相似文献   

12.
Of 43 fungicides tested in vitro, 19 showed strong, seven moderate and 17 weak inhibition of germination of conidia and ascospores of Microcyclus ulei. The formation of lesions on Hevea brasiliensis leaf discs was also suppressed by the first category of fungicides as well as by the five adjuvants tested. Ascospores were not released when perithecia were treated with urea, thiabendazole or alcoholic mercury chloride at 10.00, 0.10, 1.00 g/1 respectively; other fungicides had no such inhibitory effect. In field trials, thiophanate methyl (0.07% a.i.) and benomyl (0.025% a.i.) were most effective in controlling leaf infection, followed by chlorothalonil (0.15% a.i.) and mancozeb (0.32% a.i.). Benomyl suppressed conidial sporulation, whereas one application of thiophanate methyl (0.14% a.i.) to perithecia inhibited ascospore release; half of this concentration applied to conidial lesions or pycnidia caused the perithecia formed subsequently to abort. Thiophanate methyl thus shows promise for SALB control and elimination and benomyl may be valuable as a supplement in later rounds of spraying to control conidial sporulation. After 6 days of showery rain (2 mm for 17 min per day), water collected from sprayed leaves still gave complete inhibition of spore germination. However, inhibition was markedly reduced after 6 days of heavy rain (over 8 mm for 24 min per day).  相似文献   

13.
Leaf streak, caused by Xanthomonas translucens pv. undulosa, is the major bacterial disease of wheat in Brazil and other countries worldwide. This study aimed to evaluate the effect of silicon (Si) on disease development and the biochemical mechanisms possibly involved in resistance potentialized by this element. Plants of cv. BR‐18, susceptible to leaf streak, were grown in plastic pots containing Si‐deficient soil amended with either calcium silicate (+Si) or calcium carbonate (?Si). The content of Si increased (P ≤ 0.05) by 96.5% for the +Si when compared with ?Si treatment. There was no difference (P ≥ 0.05) between Si treatments for calcium content on leaf tissue, so variations in Si accounted for differences in the level of resistance to leaf streak. There was no difference (P ≥ 0.05) between Si treatments for incubation period, latent period, necrotic leaf area, and severity estimated by the software quant . However, chlorotic leaf area was reduced (P ≤ 0.05) by 50.2% for the +Si when compared with ?Si treatment. There was no difference (P ≥ 0.05) between Si treatments for the bacteria population on leaf tissue; however, the values seemed to be somewhat lower in the +Si treatment from 4 to 8 days after inoculation (d.a.i.) on leaves from plants supplied with Si. There was no difference (P ≥ 0.05) between Si treatments for electrolyte leakage. The concentration of total soluble phenolics and lignin‐thioglycolic acid (LTGA) derivatives did not show any apparent signs of increase during the course of infection and seemed to be slightly higher on plants not supplied with Si at the most advanced stages of bacterial infection. Chitinase activity was high at the most advanced stages of bacterial infection on leaves from +Si treatment and probably affected bacterial growth on leaf tissue. Peroxidase activity following bacterial infection was not increased by Si, but can be linked with the highest concentration of LTGA derivatives at 12 d.a.i. of plants supplied with Si. Polyphenoloxidase activity did not affect wheat resistance to leaf streak regarding of the Si treatments. The results clearly suggest that supplying Si to wheat plants can increase resistance to leaf streak possibly through an increase in tissue lignification and the participation of chitinases and peroxidases.  相似文献   

14.
Tomato leaf disks were inoculated with tobacco mosaic virus (TMV) and floated for 7 days on solutions of kinetin and benzyladenine in the range 20-0-002 mg/1. Virus content was reduced at the higher and increased at the lower concentrations. Benlate and benomyl showed a peak of cytokinin activity in the Amaranthus betacyanin bioassay equivalent to c. 0–002 fig/l kinetin. At concentrations above 25 and 100 mg a.i./l for Benlate and benomyl respectively, both compounds increased the TMV content of tomato leaf disks. Cucumber mosaic virus (CMV) content in cucumber cotyledon disks was increased by Benlate and benomyl treatment (50–100 mg/1). Applied as a soil drench (50–500 mg a.i./l) when the plants were inoculated, Benlate increased the CMV content of infected seedlings. The number of starch-iodide lesions (a measure of susceptibility) was unaltered in cotyledons treated with Benlate 7 days before or immediately after inoculation. Infectivity of crude infective cucumber sap was unaffected by benomyl incorporation, whereas Benlate reduced infectivity at higher concentrations (1000–5000 mg/1). Under the experimental conditions described, Benlate, benomyl, benzyladenine and kinetin had no effect on the chlorophyll content of tomato leaf disks, and intact seedlings.  相似文献   

15.
In glasshouse pot experiments, uptake of benomyl, thiophanate-methyl and carbendazim from equivalent soil applications (in the range 0–003– 0–035 %a-i- atarateof 2&4 ml/plant) gave equal levels of control of Botrytis lesions developing from inoculations of freshly exposed leaf scars on tomato stems. Spray applications of benomyl to exposed leaf scars controlled infection at concentrations down to 0025 % a.i. The effect of lower concentrations of the stem spray could be markedly enhanced either by the addition of a mineral oil (2 % Actipron) or by a prior soil application of benomyl at a low rate which on its own had little effect on lesion development. Protectant spray applications of glycophene and vinclozolin gave levels of control quite comparable to that of benomyl at equivalent concentrations. Evidence was obtained that the lesions formed at the artificially-inoculated leaf scars at the top of the stems of young pot-grown tomato plants were larger than those lower down. In spite of this, the level of disease control with soil applications of fungicides containing or generating carbendazim (MBC) was greater at the top than at the bottom, probably because of the normal migration of the fungicides and their accumulation at the extremities of the plant. In an observation trial in a commercial crop of tomatoes, benomyl applied either as five soil drenches at approximately monthly intervals, or as two drenches followed by five sprays at three-weekly intervals, or as five sprays alone gave marked reductions in plant loss and number of Botrytis stem lesions in both cvs Eurocross BB and Cudlow Cross. Those stem lesions which did develop, however, were generally as large as those on untreated control plants. Five sprays of dichlofiuanid gave similar levels of disease control. All the treatments gave apparently higher yields (statistically untested) in Eurocross BB, but less consistent responses were recorded in Cudlow Cross.  相似文献   

16.
This study aimed to isolate the antibacterial substance from Mahonia fortunei and determine its antibacterial activity against Xanthomonas oryzae pv. oryzicola (Xoc). Bacterial leaf streak of rice, caused by Xoc, is an important rice disease and difficult to control. During a screening of antibacterial plants against plant pathogenic bacteria at an early stage, the extract from M. fortunei was found to have a strong inhibitory effect on Xoc. In this study, the chemical components of M. fortunei stems were extracted using methanol solvent, the antibacterial substance was isolated and purified by liquid–liquid partition and silica gel column chromatography and its structure was identified by nuclear magnetic resonance. The effect and mode of action of the antibacterial substance on bacterial leaf streak of rice were also detected under greenhouse conditions. Two compounds were identified, berberine and jatrorrhizine, which had a strong inhibitory effect on Xoc. The antibacterial activity of berberine was stronger, with a half‐maximal inhibitory concentration (IC50) of 2.9008 mg/l. At the concentration of 0.5 g/l, its control efficacy on bacterial leaf streak of rice was more than 84%. Additionally, berberine could be absorbed by rice leaves and be translocated up and down in the rice plant, and the effective period was long, but its capability of lateral translocation inside the blade was poor.  相似文献   

17.
The impact of the grape leafhopper,Empoasca vitis, on leaf gas exchange, plant growth, yield, fruit quality and carbohydrate reserves of the grapevines,Vitis vinifera L., was studied. Gas exchange was measured on the discolored (red) and the green parts of infested main leaves and on leaves from uninfested vines. Photosynthesis and mesophyll conductance were severely reduced on main leaves showing leafhopper feeding symptoms. The stomatal conductance of the red leaf section of infested main leaves was lower than on undamaged control leaves. Additionally, the red leaf section of infested main leaves showed lower transpiration rates when compared to the green parts of the same leaves and to undamaged control leaves. Gas exchange processes of lateral leaves were not affected by leafhopper feeding. Leafhopperload on main leaves was correlated to visual damage symptoms. At 71.8 leafhopper-days per leaf up to 40% of the main leaf area of the infested plants was discolored from the borders towards the center. Lateral leaves showed no feeding symptoms. Shoot diameter, pruning weight and carbohydrate reserves in the wood were not affected by leafhoppers. Lateral leaf area growth was significantly stimulated on plants infested by leafhoppers. No decrease in yield and fruit quality with leafhopper-loads up to 71.8 leafhopper-days per leaf were observed.  相似文献   

18.
To develop a damage threshold for the European red mite (ERM), Panonychus ulmi (Koch), the effect of ERM injury on fruit weight and return crop in the apple cultivars (CVs) Golden Delicious and Oregon Spur were studied in the Upper Galilee of Israel for two consecutive seasons. The ERM significantly affected the leaf colour, chlorophyll content, fruit weight and return harvest in both CVs. High population levels of 450 adult female cumulative mite days (ACMDs) reduced the fruit weight on Golden Delicious but not on Oregon Spur. Population levels above approximately 600 and 900 ACMDs in Golden Delicious and Oregon Spur, respectively, caused a substantial reduction in the return harvest. Because no damage was observed at low population levels, an action threshold of 150 ACMDs is recommended.  相似文献   

19.
Seasonal history studies and a pesticide disruption trial showed that the Australian phytoseiidAmblyseius victoriensis (Womersley) was a very effective predator of the native eriophyidTegolophus australis Keifer, in commercial citrus orchards at Gayndah and Mundubbera, Queensland, from 1984 to 1990.Amblyseius victoriensis numbers rose from 10–20 per 100 leaves in spring to 100 or more per 100 leaves in mid summer, keeping the percentage ofT. australis-infested, fruit well below an economic threshold of 10%.However, in the same orchards,A. victoriensis only controlled the cosmopolitan eriophyidPhyllocoptruta oleivora (Ashmead), when less than 5% of the fruit was infested with the pest and predator numbers exceeded 40 per 100 leaves.Aspects of orchard management influencing populations ofA. victoriensis, were evaluated. The pesticides benomyl, dicofol, mancozeb, methidathion, and mezineb reduced populations by 100%, methomyl by 89%, chlorpyrifos by 80%, fenbutatin oxide by 42.5% and endosulfan by 27.5%. Iprodione and hydrated lime caused a 17% reduction, but copper oxychloride and narrow-range oil had little effect. Encouragement of alternative host plants in the orchard increased populations ofA. victoriensis. Where Rhodes grass.Chloris gayana Kunth, was allowed to flower in the inter-rows, its windblown pollen served as a supplementary food source. Windbreak rows ofEucalyptus torelliana F. Muell. acted as reservoirs ofA. victoriensis for nearby blocks of citrus. Augmentative release was effective for re-establishingA. victoriensis where it was absent following pesticide suppression.  相似文献   

20.
Transgenic tomato plants were produced with the isopentenyl transferase gene (ipt) ligated to a promoter that is active exclusively in sink tissue. Initially, transgenic plants had smaller, round-scale leaves, swollen stems, and exhibited early development of lateral shoots compared to wild type. Expression of the ipt gene resulted in the formation of unbranched roots on cuttings and delayed senescence in excised leaves. Callus and root formation occurred on excised leaves and leaf discs during dark incubation. The retention percentage of chlorophyll, as well as cytokinin in excised leaves or discs was significantly greater than wild type. Transgenic tomato fruit had elevated levels of cytokinins in the first days after fruit set and these levels were maintained longer during fruit development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号