首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies dealing with spatial orientation in mammals have mostly dealt with surface-dwelling species. We studied the ability of a subterranean rodent to orient in space and compared it with two species of rodents that spend most of their lives above ground. The solitary blind mole-rat, Spalax ehrenbergi, inhabits an extensive, branching tunnel system that it digs itself and in which it spends its entire life. We examined its ability to learn and remember a winding path towards a goal in a multiple labyrinth and compared it with Levant voles, Microtus guentheri, and laboratory rats, Rattus norvegicus. The mole-rats learned significantly faster than the rats and voles. Furthermore, their ability to remember the maze was significantly better than that of the rats after 2, 7, 30 and 60 days from the end of the learning experiment and significantly better than the voles after 120 days. The mole-rats still retained ca. 45% of their optimal performance at the end of the learning experiment after 4 months compared with 20% for the voles after 4 months and less than 20% for the rats after 2 months. Despite having lost its vision, the mole-rat was thus more able to orient in a complex maze than the surface-dwelling vole and laboratory rat. We suggest that the mole-rat compensates for the sensory limitations imposed by the subterranean niche and for its loss of vision by relying on the Earth's magnetic field and internal cues to steer its course efficiently. We discuss the possible mechanisms of orientation. Copyright 2001 The Association for the Study of Animal Behaviour.  相似文献   

2.
Eremitalpa granti namibensis is a small, blind, subterranean insectivore endemic to the Namib Desert sand dunes. Unlike other subterranean mammals which seldom leave their burrow systems, the Namib mole forages extensively on the dune surface for its insectivorous prey. Activity phasing in this atypical mole was examined in the field and in the laboratory. Free-living moles were almost exclusively nocturnal, while moles kept in the laboratory were active day and night. These findings are discussed in relation to prey availability, predator pressure and avoidance of diurnal extremes. Light and temperature appeared to be important cues for daily onset and cessation of activity.  相似文献   

3.
Magnetic orientation in mammals has been demonstrated convincingly in only two genera of subterranean mole-rats (Spalax and Cryptomys sp.) by examining the directional placement of nests in radially symmetrical indoor arenas. Mole-rats show a spontaneous directional preference to place their nests to the south or southeast of magnetic north. Using a similar nest-building assay, we show that laboratory-raised Siberian hamsters also use directional information from the magnetic field to position their nests. In contrast to mole-rats, however, the directional preference for nest position shown by Siberian hamsters appears to be learned. Hamsters were housed in rectangular cages aligned along perpendicular axes before testing. When subsequently tested in a radially symmetric arena, the hamsters positioned their nests in a bimodal distribution that coincided with the magnetic direction of the long axis of the holding cages. We also present results from an earlier set of experiments in which hamsters showed consistent orientation only in the ambient magnetic field, and not in experimentally rotated magnetic fields. The conditions under which these earlier experiments were carried out suggest that holding conditions prior to testing and the presence of nonmagnetic cues may influence the expression of magnetic orientation in the Siberian hamster. Failure to consider these and other factors may help to explain why previous attempts to demonstrate magnetic orientation in a number of rodent species have failed or, when positive results have been obtained, have been difficult to replicate. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.  相似文献   

4.
In spite of the growing interest in rodents with subterranean activity in general and the spalacids (Spalacidae) in particular, little is known about the biology of most members of this clade, such as the Chinese bamboo rat (Rhizomys sinensis). Here, we analyzed the ear morphology of R. sinensis with respect to hearing specialization for subterranean or aboveground modes of communication. It is well‐known that ecology and style of life of a particular species can be reflected in morphology of its ear, its hearing and vocalization, so we expect that such information could provide us insight into its style of life and its sensory environment. The ratio between the eardrum and stapedial footplate areas, which influences the efficiency of middle ear sound transmission, suggests low hearing sensitivity, as is typical for subterranean species. The cochlea had 3.25 coils and resembled species with good low frequency hearing typical for subterranean mammals. The length of the basilar membrane was 18.9 ± 0.8 mm and its width slowly increased towards the cochlear apex from 60 to 85 μm. The mean density of outer hair cells was 344 ± 22 and of inner hair cells 114 ± 7.3 per 1 mm length of the organ of Corti, and increased apically. These values (except for relatively low hair cell density) usually characterize ears specialized for low frequency hearing. There was no evidence for an acoustic fovea. Apart of low hair cell density which is common in aboveground animals, this species has also relatively large auricles, suggesting the importance of sound localization during surface activity. The ear of the Chinese bamboo rat thus contains features typical for both aboveground and subterranean mammals and suggests that this spalacid has fossorial habits combined with regular aboveground activity. J. Morphol. 277:575–584, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Plants are necessarily complex systems that require monitoring of multiple environmental signals and, in response to those signals, coordination of differentiation and development of an extensive array of cell types at multiple locations. This coordination must rely on integration of long-distance signals that provide a means of communication among different plant parts. We propose that the relatively well-characterized classical phytohormones must act with several other long-distance signals to achieve this level of organization with dynamic yet measured responses. This is supported by observations that classical phytohormones: (i) operate in complex yet experimentally unresolved networks involving cross-talk and feedback, (ii) are generally multifunctional and nonspecific and hence must rely on other long-distance cues or pre-set conditions to achieve specificity and (iii) are likely to mask roles of other long-distance signals in several experimental contexts. We present evidence for involvement of novel long-distance signals in three developmental processes—branching, flowering and nodulation, and discuss the possible identities of novel signalling molecules.  相似文献   

6.
Our understanding of the effect of Pleistocene climatic changes on the biodiversity of European mammals mostly comes from phylogeographical studies of non‐subterranean mammals, whereas the influence of glaciation cycles on subterranean mammals has received little attention. The lack of data raises the question of how and to what extent the current amount and distribution of genetic variation in subterranean mammals is the result of Pleistocene range contractions/expansions. The common mole (Talpa europaea) is a strictly subterranean mammal, widespread across Europe, and represents one of the best candidates for studying the influence of Quaternary climatic oscillation on subterranean mammals. Cytochrome b sequences, as obtained from a sampling covering the majority of the distribution area, were used to evaluate whether Pleistocene climate change influenced the evolution of T. europaea and left a trace in the genetic diversity comparable to that observed in non‐subterranean small mammals. Subsequently, we investigated the occurrence of glacial refugia by comparing the results of phylogeographical analysis with species distribution modelling. We found three differentiated mitochondrial DNA lineages: two restricted to Spain and Italy and a third that was widespread across Europe. Phylogenetic inferences and the molecular clock suggest that the Spanish moles represent a highly divergent and ancient lineage, highlighting for the first time the paraphyly of T. europaea. Furthermore, our analyses suggest that the genetic break between the Italian and the European lineages predates the last glacial phase. Historical demography and spatial principal component analysis further suggest that the Last Glacial Maximum left a signature both in the Italian and in the European lineages. Genetic data combined with species distribution models support the presence of at least three putative glacial refugia in southern Europe (France, Balkan Peninsula and Black Sea) during thelast glacial maximum that likely contributed to post‐glacial recolonization of Europe. By contrast, the Italian lineage remained trapped in the Italian peninsula and, according to the pattern observed in other subterranean mammals, did not contribute to the recolonization of northern latitudes. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 495–512.  相似文献   

7.
For many years, orientation in migratory birds has primarily been studied in the laboratory. Although a laboratory-based setting enables greater control over environmental cues, the laboratory-based findings must be confirmed in the wild in free-flying birds to be able to fully understand how birds orient during migration. Despite the difficulties associated with following free-flying birds over long distances, a number of possibilities currently exist for tracking the long distance, sometimes even globe-spanning, journeys undertaken by migrating birds. Birds fitted with radio transmitters can either be located from the ground or from aircraft (conventional tracking), or from space. Alternatively, positional information obtained by onboard equipment (e.g., GPS units) can be transmitted to receivers in space. Use of these tracking methods has provided a wealth of information on migratory behaviors that are otherwise very difficult to study. Here, we focus on the progress in understanding certain components of the migration-orientation system. Comparably exciting results can be expected in the future from tracking free-flying migrants in the wild. Use of orientation cues has been studied in migrating raptors (satellite telemetry) and thrushes (conventional telemetry), highlighting that findings in the natural setting may not always be as expected on the basis of cage-experiments. Furthermore, field tracking methods combined with experimental approaches have finally allowed for an extension of the paradigmatic displacement experiments performed by Perdeck in 1958 on the short-distance, social migrant, the starling, to long-distance migrating storks and long-distance, non-socially migrating passerines. Results from these studies provide fundamental insights into the nature of the migratory orientation system that enables experienced birds to navigate and guide inexperienced, young birds to their species-specific winter grounds.  相似文献   

8.
Life underground has provided remarkable examples of adaptive evolution in subterranean mammals; however, genome‐wide adaptive evolution to underground stresses still needs further research. There are approximately 250 species of subterranean mammals across three suborders and six families. These species not only inhabit hypoxic and dark burrows but also exhibit evolved adaptation to hypoxia, cancer resistance, and specialized sensory systems, making them an excellent model of evolution. The adaptive evolution of subterranean mammals has attracted great attention and needs further study. In the present study, phylogenetic analysis of 5,853 single‐copy orthologous gene families of five subterranean mammals (Nannospalax galili, Heterocephalus glaber, Fukomys damarensis, Condylura cristata, and Chrysochloris asiatica) showed that they formed fou distinct clusters. This result is consistent with the traditional systematics of these species. Furthermore, comparison of the high‐quality genomes of these five subterranean mammalian species led to the identification of the genomic signatures of adaptive evolution. Our results show that the five subterranean mammalian did not share positively selected genes but had similar functional enrichment categories, including hypoxia tolerance, immunity promotion, and sensory specialization, which adapted to the environment of underground stresses. Moreover, variations in soil hardness, climate, and lifestyles have resulted in different molecular mechanisms of adaptation to the hypoxic environment and different degrees of visual degradation. These results provide insights into the genome‐wide adaptive evolution to underground stresses in subterranean mammals, with special focus on the characteristics of hypoxia adaption, immunity promotion, and sensory specialization response to the life underground.  相似文献   

9.
Compared to acoustically unspecialized mammals (soricids and murids), the middle ear of subterranean insectivores and rodents (twelve species of six families examined) was clearly distinguished and characterized by many common features: rather round and relatively larger eardrum without a pars flaccida; reduced gonial; loose or no connection between the malleus and the tympanic bone; reduced and straightened transversal part of the malleus; enlarged incus; increased and rather flat incudo-mallear joint; rather parallel position of the mallear manubrium and incudal crus longum in some species (and their fusion in bathyergids); reduced or even missing middle ear muscles. Convergent occurrence of these structural features in taxa of different origin and their generally derived character suggest that they cannot be categorized as degenerative. The form of the stapes can be considered as a non-adaptive trait; it was taxon specific yet remarkably polymorphous in some species and exhibited no convergent features among subterranean mammals. Structural retrogression resulting in a columella-like stapes was observed in some species lacking the stapedial artery. The stapedial base was relatively larger than in unspecialized mammals. The subterranean mammals did not exhibit conspicuously enlarged eardrums as would be required for sensitive tuning to low frequencies. It is, however, argued that while selective pressures in the subterranean ecotope promoted hearing of low frequencies, hearing sensitivity did not have to be enhanced.  相似文献   

10.
Seismic Signal Use by Fossorial Mammals   总被引:2,自引:1,他引:1  
The subterranean environment is not favorable for the use ofvision or the audition of airborne sounds as means of long-distancesensory perception. However, seismic vibrations have been shownto propagate at least an order of magnitude better than airbornesound between the burrow systems of the mole-rat Georychus capensis.The use of the seismic channel for communication undergroundis well documented for other species of bathyergids, as wellas the spalacine mole-rat Nannospalax. It has recently beensuggested that the golden mole Eremitalpa granti namibensismay also be sensitive to ground vibrations, in this case usedin foraging in its desert habitat. In this paper, the use of seismic signals among these and otherfossorial mammals is reviewed from theoretical, behavioral andanatomical standpoints. The question of whether auditory orsomatosensory means are used to detect vibratory signals isexamined. Attempts to explain the distribution of seismic sensitivityand communication mechanisms among fossorial mammals are considered.The potential influences of different soil type and diggingmethods are discussed, and it is proposed that digging mechanismsinvolving the head might preadapt a fossorial mammal towardsthe development of seismic sensitivity.  相似文献   

11.
Vocalizations play a major role in communication of mammals with subterranean lifestyles since other senses are dramatically restricted in the environment of below ground burrows. In our study, we recorded vocalizations of 10 adult males and 10 adult females of a social bathyergid, the Mashona mole-rat (Fukomys darlingi) in different behavioural contexts. Vocalizations were divided into four categories according to behavioural contexts. Similar to other subterranean mammals, the range of Mashona mole-rat calls is shifted towards lower frequencies. We described 10 types of true vocal signals and 2 mechanical sounds. The vocal repertoire of the Mashona mole-rat is less rich compared to other social mole-rats, corresponding with its low mean family size. Interestingly, this species has a higher diversity in contact and distress calls, while using a relatively low number of aggressive signals.  相似文献   

12.
P. HANSEN 《Bioacoustics.》2013,22(2):129-140
ABSTRACT

Coruros Spalacopus cyanus, social fossorial rodents from Chile, use a complex acoustic repertoire with eleven different true vocalisations and one mechanical sound in various behavioural contexts. The complex of contact calls is particularly well differentiated. Juvenile coruros produced six true vocalisations of which four were structurally identical to adult calls. One vocalisation had components of two adult sounds and one occurred only in juvenile animals. Certain calls from the adult repertoire were lacking. The frequencies of sounds of juveniles were considerably higher than those of adults, with many sounds reaching the ultrasonic range. Nevertheless, pure ultrasonic sounds were not recorded.

The frequencies of the analysed sounds of coruros extended from 0.17 to 20.33 kHz with dominant frequency components between 0.17 and 10 kHz. The acoustic properties of calls are suitable for transmission above and below ground, thus providing further indirect evidence that coruros are not strictly confined to an underground way of life. Indeed, the great variability of frequency ranges, with lower frequencies always being included, reflects a specialisation for communication in variable acoustic environments.

The most distinctive and unique vocalisation of coruros is the long duration musical trilling (lasting up to two minutes), which is a long-distance call emitted in alarm and arousal contexts. Recordings of this call from natural burrows in the field in Chile showed similar structural features to vocalisations from captive colonies in the laboratory.

Our findings provide a further example of matching physical properties of vocalisations to the acoustic conditions of the habitat. However, vocalisations in subterranean rodents consist almost exclusively of short-distance calls, the trilling of coruros being the notable exception. Since the selective pressure of the acoustic environment upon the evolution of short-distance vocalisations is probably minimal, we suggest that during their evolution, subterranean mammals have matched their vocalisations primarily to their hearing range and not directly to the acoustics underground. Hearing probably has been the primary target of natural selection, serving not only for communication but also for detection of predators (and, in carnivores, of prey).  相似文献   

13.
Lacertid lizards use chemical cues emitted by saurophagous snakes to evade predation. Whether these lizards can detect and respond to the chemical cues of predatory mammals has not been studied. As many mammals carry distinct body odours and/or use chemical cues for intraspecific communication, lizards can be expected to use these chemicals as early warning cues. To test this idea, we observed the behaviour of Asian grass lizards (Takydromus sexlineatus) that had been transferred to an unfamiliar test arena containing one of four scent treatments. No particular scent was applied to the arena in the control situation. Diluted aftershave served as a pungency control. In the snake treatment, scent of the Oriental whip snake (Ahaetulla prasina) was applied. We included this treatment to learn how Asian grass lizards react to predator chemical cues. Finally, in the mongoose treatment, the lizards were confronted with scent cues of several small Indian mongooses (Herpestes auropunctatus). Snake scent elicited foot shakes, startles and tail vibrations. These are behaviours that in lacertid lizards are associated with stressful situations such as predatory encounters. Surprisingly, lizards confronted with mongoose scent exhibited none of these stress-indicating behaviours. In fact, their behaviour did not differ from that of lizards subjected to an odourless control treatment. These results raise concern. Mongooses are rapidly invading ecosystems worldwide. If lizards that have co-evolved with mongooses are unable to detect these predators’ presence through chemical cues, it seems highly unlikely that evolutionary naïve lizards will develop this ability rapidly.  相似文献   

14.
The Chaco leaf-cutting ant Atta vollenweideri (Forel) inhabits large and deep subterranean nests composed of a large number of fungus and refuse chambers. The ants dispose of the excavated soil by forming small pellets that are carried to the surface. For ants in general, the organisation of underground soil transport during nest building remains completely unknown. In the laboratory, we investigated how soil pellets are formed and transported, and whether their occurrence influences the spatial organisation of collective digging. Similar to leaf transport, we discovered size matching between soil pellet mass and carrier mass. Workers observed while digging excavated pellets at a rate of 26 per hour. Each excavator deposited its pellets in an individual cluster, independently of the preferred deposition sites of other excavators. Soil pellets were transported sequentially over 2 m, and the transport involved up to 12 workers belonging to three functionally distinct groups: excavators, several short-distance carriers that dropped the collected pellets after a few centimetres, and long-distance, last carriers that reached the final deposition site. When initiating a new excavation, the proportion of long-distance carriers increased from 18% to 45% within the first five hours, and remained unchanged over more than 20 hours. Accumulated, freshly-excavated pellets significantly influenced the workers'' decision where to start digging in a choice experiment. Thus, pellets temporarily accumulated as a result of their sequential transport provide cues that spatially organise collective nest excavation.  相似文献   

15.
African mole-rats (family: Bathyergidae) are strictly subterranean mammals that reside in extensive networks of underground tunnels. They are rarely, if ever, exposed to light and experience muted temperature ranges. Despite these constant conditions, the presence of a functional circadian clock capable of entraining to external light cues has been reported for a number of species. In this study, we examine a social mole-rat species, Cryptomys hottentotus mahali, to determine if it possesses a functional circadian clock that is capable of perceiving light and ambient temperature cycles, and can integrate these cues into circadian rhythms of locomotor activity and core body temperature. Eight male and eight female, non-reproductive individuals were subjected to six cycles of varying light and temperature regimes. The majority of the individuals displayed daily rhythms of locomotor activity and body temperature that are synchronised to the external light and temperature cycles. Furthermore, endogenous rhythms of both locomotor activity and core body temperature were displayed under constant conditions. Thus, we can conclude that C. h. mahali possesses a functional circadian clock that can integrate external light and temperature cues into circadian rhythms of locomotor activity and core-body temperature.  相似文献   

16.
Multiple personalities: synaptic target cells as introverts and extroverts   总被引:1,自引:0,他引:1  
The intricate process of wiring a neuronetwork requires a high degree of accuracy in the communication between pre- and post-synaptic cells. While presynaptic cells have been widely recognized for their dynamic role in synaptic matchmaking, post-synaptic cells have historically been overlooked as passive targets. Recent studies in the Drosophila embryonic neuromuscular system provide compelling evidence that post-synaptic cells participate actively in the synaptogenic process. Endocytosis allows them to quickly modify the array of molecular cues they provide on their surfaces and the extension of dynamic filopodia allows post-synaptic cells to engage in direct long-distance communication. By making use of familiar cellular mechanisms such as endocytosis and filopodia formation, post-synaptic cells may be able to communicate more effectively with potential synaptic partners.  相似文献   

17.
  1. Researchers have used multiple methods to understand spatial mapping memory used by arboreal mammals for orientation: the change-point test, measures of path tortuosity, field experiments with feeding platforms, nearest-neighbour feeding tree methods, complex calculations of travel route parameters, and theoretical models.
  2. This literature review provides details of all of these methods, highlights previous results from spatial mapping memory studies, and discusses perspectives for future studies.
  3. Previous studies have shown that various arboreal mammals, mostly in the order Primates, can memorise spatial environments using a cognitive map. Two types of maps are characterised: the topological map, based on landmarks and reused routes, and the Euclidean map, including the ability to create shortcuts by measuring distances and distinguishing between directions. Most of the studies showed that mammals do not travel randomly but, due to the difficulty of determining which spatial map is used, the use of cognitive maps remains hypothetical.
  4. When studying spatial mapping memory, data collection and analysis should account for the species’ characteristics, such as the home-range size, food preferences, and types of movements. The role of sensory cues (visual, auditory, olfactory) is crucial to understanding spatial orientation. The most relevant way to determine how arboreal mammals orientate themselves in space is by using a mix of methods: random theoretical models, collecting data in a controlled environment, measuring different parameters of travel patterns, and considering the use of sensory cues and environmental factors of the study sites.
  5. Research pertaining to spatial mapping memory in arboreal mammals and forest-dwelling mammals is important for understanding cognitive abilities in mammal species, and more studies are needed in mammals of various orders.
  相似文献   

18.
Research on long-distance vocal communication in mammals has tended to focus on the maximum distances over which a vocal signal might be physically detectable. For example, because elephants and some whales communicate using infrasonic calls, and low frequencies are particularly resilient to attenuation, it has often been assumed that these species can communicate over very long distances. However, a wide range of acoustic characteristics typically carry information on individual identity in mammalian calls, and frequency components crucial for social recognition could be distorted or lost as distance from the source increases. We used long-distance playback experiments to show that female African elephants, Loxodonta africana, can recognize a contact call as belonging to a family or bond group member over distances of 2.5 km, but that recognition is more usually achieved over distances of 1-1.5 km. We analysed female contact calls to distinguish source- and filter-related vocal characteristics that have the potential to code individual identity, and rerecorded contact calls 0.5-3.0 km from the loudspeaker to determine how different frequencies persist with distance. Our analyses suggest that the most important frequency components for long-distance communication of social identity may be well above the infrasonic range. When frequency components around 115 Hz become immersed in background noise, once propagation distances exceed 1 km, abilities for long-distance social recognition become limited. Our results indicate that the possession of an unusually long vocal filter, which appears to incorporate the trunk, may be a more important attribute for long-distance signalling in female African elephants than the ability to produce infrasound. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

19.
The naked mole-rat (NMR) Heterocephalus glaber is a unique and fascinating mammal exhibiting many unusual adaptations to a subterranean lifestyle. The recent discovery of their resistance to cancer and exceptional longevity has opened up new and important avenues of research. Part of this resistance to cancer has been attributed to the fact that NMRs produce a modified form of hyaluronan—a key constituent of the extracellular matrix—that is thought to confer increased elasticity of the skin as an adaptation for living in narrow tunnels. This so-called high molecular mass hyaluronan (HMM-HA) stems from two apparently unique substitutions in the hyaluronan synthase 2 enzyme (HAS2). To test whether other subterranean mammals with similar selection pressures also show molecular adaptation in their HAS2 gene, we sequenced the HAS2 gene for 11 subterranean mammals and closely related species, and combined these with data from 57 other mammals. Comparative screening revealed that one of the two putatively important HAS2 substitutions in the NMR predicted to have a significant effect on hyaluronan synthase function was uniquely shared by all African mole-rats. Interestingly, we also identified multiple other amino acid substitutions in key domains of the HAS2 molecule, although the biological consequences of these for hyaluronan synthesis remain to be determined. Despite these results, we found evidence of strong purifying selection acting on the HAS2 gene across all mammals, and the NMR remains unique in its particular HAS2 sequence. Our results indicate that more work is needed to determine whether the apparent cancer resistance seen in NMR is shared by other members of the African mole-rat clade.  相似文献   

20.
Under sexual selection, genitalia typically undergo rapid and divergent evolution across species and competition between the sexes over control of fertilisation may drive the co-evolution of male and female sexual traits. Sexual selection can, therefore, influence genitalia in three fundamental but non-mutually exclusive ways: (1) cryptic female choice, (2) sperm competition and (3) sexual conflict. Golden moles (Chrysochloridae) are a highly specialised family endemic to sub-Saharan Africa. We examined intra-specific genital allometry of both male and female subterranean Hottentot golden moles (Amblysomus hottentotus). Consistent with previous studies in mammals, we found positive allometry and a high coefficient of variation (CV) for male genitalia. The results for female reproductive tract length of A. hottentotus contrast with the findings of previous studies as isometry was recorded. Based on the allometric relationships of both males and females presented here, we suggest that the males do not sequester females and that in the absence of visual cues the female may use penis size as an indicator of phenotypic quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号