首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genistein-8-C-glucoside (G8CG) belongs to natural isoflavones phytoestrogens, which are a subclass of flavonoids, a large group of polyphenolic compounds widely distributed in plants, with possible anticarcinogenic effects in various in vitro systems and in vivo animal models. We used glycosylated genistein (genistein-8-C-glucoside) from flowers of lupine (Lupinus luteus L.) to study its cytotoxic and genotoxic effects on mouse embryonic fibroblast (line NIH 3T3). The MTT assay to assess cytotoxicity and comet assay for the detection of DNA damage were used. The cells were exposed to various concentrations of genistein-8-C-glucoside (2.5-110 μM) and hydrogen peroxide (5-90 μM). The effect of G8CG alone or in combination with H2O2 was determined. G8CG at concentrations >20 μM significantly reduced cell viability and induced DNA damage. In contrast, lower concentrations of (2.5-10 μM) G8CG showed antioxidant properties against H2O2-induced DNA damage with no associated toxicity.  相似文献   

2.
Bioflavonoids (polyhydroxyphenols) are ubiquitous components of plants, fruits and vegetables; these compounds are efficient scavengers of free oxygen radicals and peroxides. The aim of this study was to investigate the antioxidant and radioprotective effects of genistein-8-C-glicoside (G8CG), an isoflavone, isolated from the flowers of Lipinus luteusl L. G8CG prevents dose-dependently the destruction of the cytochrome P-450 and its conversion to an inactive form cytochrome P-420, inhibits membrane lipid peroxidation and membrane SH-group oxidation in isolated rat liver microsomal membranes under tert-butylhydroperoxide-induced oxidative stress. Single whole-body gamma-irradiation (1 Gy) of rats results in blood plasma and liver microsomal membrane lipid peroxidation, impairments of microsomal membrane structure and function. Rat treatment with G8CG (75 mg/kg) developed the clear protective effect, stabilized membrane structure and improved the parameters of the monooxygenase function. We can conclude that G8CG can be used as antioxidant and radioprotective agent.  相似文献   

3.
2,2,4,7-Tetramethyl-1,2,3,4-tetrahydroquinoline (THQ) is a new synthetic compound with potential antioxidant activity. In this study, cytotoxic, genotoxic and antioxidant activities of THQ were studied on human lymphocytes with the use of the trypan blue exclusion assay, the TUNEL method, the comet assay and the micronucleus test. The activities of THQ were compared with those of a structurally similar compound-ethoxyquin (1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline, EQ), which is used in animal feeds as a preservative. Cytotoxic effects of THQ were observed after 1-h treatment at the concentration of 500 microM and after 24-h treatments at the concentrations of 250-500 microM. Although the micronucleus test did not reveal a genotoxic effect of THQ, in the comet assay the statistically significant increase in DNA damage was observed as compared with the control. On the other hand, the protection of human lymphocytes against DNA damage induced by hydrogen peroxide suggests an antioxidant activity of THQ. The comparative analysis of THQ and EQ activities performed in these studies revealed that THQ was less cytotoxic and less genotoxic than EQ. Slightly lower antioxidant activity of THQ was also shown in the comet assay when it was used at the lower studied doses (1-5 microM), but for the highest one (10 microM) its efficiency was similar to that of EQ. In the micronucleus assay THQ was more effective than EQ in protecting the cultured lymphocytes from clastogenicity of H2O2. We believe that THQ is worthy of further detailed studies on its antioxidant properties to confirm its usefulness as a preservative.  相似文献   

4.
Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological properties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistein, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis.  相似文献   

5.
Erythrocyte damage induced by hypochlorous acid (HOCl) results in cell lysis developing with time after the oxidant is removed (post-hemolysis). The apparent rate constant of post-hemolysis depends on time of incubation in the presence of HOCl and concentration of this oxidant. HOCl-dependent damage of erythrocyte membranes is associated with uncompetitive inhibition of the membrane-bound acetylcholinesterase. Genistein-8-C-glucoside is an isoflavonoid isolated from the flowers of Lupinus luteus L.; in aqueous solution, genistein-8-C-glucoside (0.5-2 mM) efficiently inhibited HOCl-induced damage to erythrocytes similar to the known HOCl scavengers taurine and reduced glutathione. This bioflavonoid can protect the erythrocyte membrane (and to a lesser extent, intraerythrocytic components) by interacting with the reactive chlorine species including hypochlorous acid and membrane-bound chloroamines formed in the reaction of HOCl with erythrocyte membrane proteins.  相似文献   

6.
The potential protective effects of the flavanol catechin, the flavonol quercetin, the flavones, luteolin and rutin, and the isoflavones, genistein and daidzein, against the photo-oxidative stress induced by ultraviolet A radiation (UVA) and by phototoxic reactions resulting from the interaction of UVA with drugs and chemicals, has been assessed with cultured human skin fibroblasts. Lipid peroxidation and cell death have been chosen as model photobiological damage induced by UVA alone or photosensitized by cyamemazine (CMZ) and its photoproduct possessing phototoxic properties. Contrasting effects of flavonoids are observed. The flavanol, the flavonol and the flavones may protect against lipid peroxidation and cell death induced by 30 J cm(-2) of UVA alone or CMZ plus 10 J cm(-2) UVA. On the other hand, an amplification of the photodamage may be observed with isoflavones. A concentration-dependence study demonstrates that among the protective flavonoids, quercetin is the most efficient. The very effective protection brought by quercetin may result from its ability to scavenge reactive oxygen species produced by the photo-oxidative stress. However, the modification of membrane properties and the alteration of the lysosomal function by quercetin may not be neglected in these protective effects. The amplification of the photodamage by isoflavones is in sharp contrast with previous literature data demonstrating photoprotection by genistein. As a consequence, it may be concluded that an eventual antioxidant action of genistein may strongly depend on cells and photosensitizers. Furthermore such contrasting pro-versus anti-oxidant effects have to be taken into account when using flavonoid mixtures of plant extracts.  相似文献   

7.
Argentatins A and B are abundant triterpenes present in Parthenium argentatum. Both compounds have shown cytotoxic properties on K562, MCF-7, PC-3, HCT-15 and U251 human cancer cell lines. Furthermore the cytotoxic, cytostatic and genotoxic effects of the argentatins on proliferating lymphocytes were evaluated using cytokinesis-block micronucleus test. Argentatin A had no cytostatic properties, but it was cytotoxic for proliferating lymphocytes at a concentration of 25 microM (P < 0.005). On the other hand, argentatin B showed significant cytostatic effects (P < 0.001) at concentrations of 5 to 25 microM and it did not show cytotoxic effects at the same concentrations. Neither argentatin showed genotoxic effects in terms of micronucleus frequency in human lymphocytes. According to these results the argentatins are not able to cause injury on DNA by clastogenic or aneugenic mechanisms.  相似文献   

8.
Developing antiangiogenic agents using natural products has remained a significant hope in the mainstream of anticancer research. In the present investigation series of flavonoids possessing di-, tri-, tetra-, and penta-hydroxy substitutions were evaluated as antiangiogenic agents using in vivo choriallantoic membrane model. The MTT-based cytotoxicity against selected cancer cell lines was carried out to determine the anticancer potential. The kinetics of free radical scavenging activities of these compounds was demonstrated using 2,2-diphenyl-1-picryl hydrazine (DPPH) and superoxide anion radicals (SORs). To understand the possible antiangiogenic mechanism, the selected flavonoids were docked in silico onto the proangiogenic peptides such as vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF-1α), and vascular endothelial growth factor receptor-2 (VEGFR2) from human origin. The results of the study shows that amongst the tested flavonoids, genistein (87.1%), kaempferol, (86.3%), and quercetin (84.7%) were found to be effective inhibitors of angiogenesis in CAM model. The antiangiogenic, cytotoxic, and antioxidant activities are discussed in light of structure–activity relationship using in silico approach and other drug-related properties were also calculated using BioMed CAChe V. 6.1.10. The results of the present study focus the isoflavone genistein, kaempferol, and quercetin as lead molecules for designing novel anti-tumor/antioxidant agents targeting angiogenesis.  相似文献   

9.
Hydroquinone-induced genotoxicity and oxidative DNA damage in HepG2 cells   总被引:1,自引:0,他引:1  
Hydroquinone (HQ) is used as an antioxidant in rubber industry and as a developing agent in photography. HQ is also an intermediate in the manufacture of rubber, food antioxidant and monomer inhibitor. However, the mechanisms of the effects, in particular those related to its genotoxicity in humans, are not well understood. The aim of this study was to assess the genotoxic effects of HQ and to identify and clarify the mechanisms, using human hepatoma HepG2 cells. DNA strand breaks and DNA-protein crosslinks (DPC) were measured by the proteinase K-modified alkaline single cell gel electrophoresis (SCGE) assays. Using the SCGE assay, a significant dose-dependent increment in DNA migration was detected at concentrations of HQ (6.25-25 microM); but at the higher tested concentrations (50 microM), a reduction in the migration compared to the maximum migration at 25 microM was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of HQ (50 microM). A significant increase of the frequency of micronuclei was found in the range from 12.5 to 50 microM in the micronucleus test (MNT). The data suggested that HQ caused DNA strand breaks, DPC and chromosome breaks. To elucidate the oxidative DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were chosen to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that HQ induced the increased levels of ROS and depletion of GSH in HepG2 cells, the doses being 25-50 and 6.25-50 microM, respectively. Moreover, HQ significantly caused 8-hydroxydeoxyguanosine (8-OHdG) formation in HepG2 cells at concentrations from 12.5 to 50 microM. All these results demonstrate that HQ exerts genotoxic effects in HepG2 cells, probably through DNA damage by oxidative stress. GSH, as a main intracellular antioxidant, is responsible for cellular defense against HQ-induced DNA damage.  相似文献   

10.
Isoflavones are phenolic compounds widely distributed in plants and found in a high percentage in soybeans. They have important biological properties and are regarded as potential chemopreventive agents. The aim of this study was to verify the preventive effect of two soy isoflavones (genistein and daidzein) by a micronucleus assay, analysis of GST activity, and real-time RT-PCR analysis of GSTa2 gene expression. Mutagens of direct (doxorubicin) and indirect (2-aminoanthracene) DNA damage were used. Hepatoma cells (HTC) were treated with genistein or daidzein for 26 h at noncytotoxic concentrations; 10 μM when alone, and 0.1, 1.0 and 10 μM when combined with genotoxic agents. The micronucleus test demonstrated that both isoflavones alone had no genotoxic effect. Genistein showed antimutagenic effects at 10 μM with both direct and indirect DNA damage agents. On phase II enzyme regulation, the current study indicated an increase in total cytoplasmic GST activity in response to genistein and daidzein at 10 μM supplementation. However, the mRNA levels of GSTa2 isozymes were not differentially modulated by genistein or daidzein. The results point to an in vitro antimutagenic activity of genistein against direct and indirect DNA damage-induced mutagenicity.  相似文献   

11.
Choi EJ  Kim T  Lee MS 《Life sciences》2007,80(15):1403-1408
We investigated the effects of genistein and genistin on proliferation and apoptosis of human ovarian SK-OV-3 cells and explored the mechanism for these effects. SK-OV-3 cells were treated with genistein and genistin at various concentrations (ranging from 1 to 100 muM) either alone or in combination for 24 and 48 h. Cell proliferation was estimated using an MTT assay, and cell cycle arrest was evaluated using FACS. Caspase-3 activity and annexin-based cell cycle analysis were used as measures of apoptosis. In addition, genistein- and genistin-induced cytotoxicity was determined by measuring release of LDH. Genistein treatment for 24 or 48 h substantially inhibited SK-OV-3 cell proliferation in a dose-dependent manner, and genistin treatment for 48 h also inhibited cell proliferation. Genistein caused cell cycle arrest at G2/M phase in dose- and time-dependent manner, and genistin caused cell cycle arrest not only at G2/M phase but also at G1 phase. Genistein markedly induced apoptosis and significantly increased LDH release, whereas genistin did not affect LDH release. Moreover, exposure to both genistein and genistin in combination for 48 h induced apoptosis without increasing LDH release. Genistein and genistin inhibit cell proliferation by disrupting the cell cycle, which is strongly associated with the arrest induction of either G1 or G2/M phase and may induce apoptosis. Based on our findings, we speculate that both genistein and genistin may prove useful as anticancer drugs and that the combination of genistein and genistin may have further anticancer activity.  相似文献   

12.
A new complex of the oxovanadium(IV) cation with the flavolignan silibinin has been synthesized and characterized. Vanadium compounds show interesting biological and pharmacological properties and some of them display antitumoral actions. Flavonoids are part of a larger group of antioxidant compounds called polyphenols which may inhibit the proliferation and growth of cancer cells. The antioxidant and antitumoral effects of silibinin and its oxovanadium(IV) complex were investigated. Silibinin acted as a very strong antioxidant and its complexation with oxovanadium(IV) improved this behavior. Besides, the generation of reactive oxygen species (ROS) by this compound was favored in tumoral (UMR106) cells and correlated with the deleterious behavior in the proliferation of this cell line. Conversely, silibinin did not exert any effect on the proliferation of normal osteoblasts (MC3T3E1). The cytotoxic action and ROS generation of the oxovanadium(IV) complex was more effective in tumoral cells. This behavior was not consistent with cleaving DNA of plasmid DNA pA1 because no significant cleaving activity was observed in both cases. These results suggest that the main deleterious mechanisms may take place through cytotoxic effects more than genotoxic actions. A comparison with our own findings on the behavior of other flavonoids and their vanadyl(IV) complex has also been performed.  相似文献   

13.
Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds, and may increase the risk of human exposure to this chemical at the workplace. In a previous study, we demonstrated the pro-oxidant action and the mutagenic properties of this compound on bacteria and yeast. In the present study, we evaluated the putative cytotoxic, pro-oxidant, genotoxic, and mutagenic properties of this molecule in V79 Chinese lung fibroblast cells. When cells were treated with increasing concentrations of DPDS, its cytotoxic activity, as determined using four cell viability endpoints, occurs in doses up to 50 microM. The MTT reduction was stimulated, which may indicate reactive oxygen species (ROS) generation. Accordingly, the treatment of cells for 3h with cytotoxic doses of DPDS increased TBARS levels, and sensitized cells to oxidative challenge, indicating a pro-oxidant effect. The measurement of total, reduced, and oxidized glutathione showed that DPDS can lead to lower intracellular glutathione depletion, with no increase in the oxidation rate in a dose- and time-dependent manner. At the higher doses, DPDS generates DNA strand breaks, as observed using the comet assay. The treatment also induced an increase in the number of binucleated cells in the micronucleus test, showing mutagenic risk by this molecule at high concentrations. Finally, pre-incubation with N-acetylcysteine, which restored GSH to normal levels, annulled DPDS pro-oxidant and genotoxic effects. These findings show that DPDS-induced oxidative stress and toxicity are closely related to intracellular level of reduced glutathione. Moreover, at lower doses, this molecule has antioxidant properties, protecting the cell against oxidative damage induced by hydrogen peroxide.  相似文献   

14.
We have used DNase I footprinting to assess the formation of triple helices at 15mer oligopurine target sites which are interrupted by several (up to four) adjacent central pyrimidine residues. Third strand oligonucleotides were designed to generate complexes containing central (X.TA)nor (X.CG)n triplets (X = each base in turn) surrounded by C+.GC and T.AT triplets. It has previously been shown that G.TA and T.CG are the most stable triplets for recognition of single TA and CG interruptions. We show that these triplets are the most useful for recognizing consecutive pyrimidine interruptions and find that addition of each pyrimidine residue leads to a 30-fold decrease in third strand affinity. The addition of 10 microM naphthylquinoline triplex-binding ligand stabilizes each complex so that all the oligonucleotides produce footprints at similar concentrations (0.3 microM). Targets containing two pyrimidines are only bound by oligonucleotides generating (G.TA)2 and (T.CG)2 with a further 30-fold decrease in affinity. (G.TA)2 is slightly more stable than (T.CG)2. In the presence of the triplex-binding ligand the order of stability is (G.TA)2 > (C.TA)2 > (T.TA)2 > (A.TA)2 and (T.CG)2 > (C.CG)2 > (G.CG)2 = (A.CG)2. No oligonucleotide footprints are generated at target sites containing three consecutive pyrimidines, though addition of 10 microM triplex-binding ligand produces stable complexes with oligonucleotides generating (G.TA)3, (T.CG)3 and (C.CG)3, with a further 30-fold reduction in affinity. No footprints are generated at targets containing four Ts, though the ligand induces a weak interaction with the oligonucleotide generating (T.CG)4.  相似文献   

15.
Marine organisms have been shown to be potential sources of bioactive compounds with pharmaceutical applications. Previous chemical investigation of the nudibranch Tambja eliora led to the isolation of the alkaloid tambjamine D. Tambjamines have been isolated from marine sources and belong to the family of 4-methoxypyrrolic-derived natural products, which display promising immunosuppressive and cytotoxic properties. Their ability to intercalate DNA and their pro-oxidant activity may be related to some of the biological effects of the 4-methoxypyrrolic alkaloids. The aim of the present investigation was to determine the cytotoxic, pro-oxidant and genotoxic properties of tambjamine D in V79 Chinese hamster lung fibroblast cells. Tambjamine D displayed a potent cytotoxic effect in V79 cells (IC50 1.2 microg/mL) evaluated by the MTT assay. Based on the MTT result, V79 cells were treated with different concentrations of tambjamine D (0.6, 1.2, 2.4 and 4.8 microg/mL). After 24h, tambjamine D reduced the number of viable cells in a concentration-dependent way at all concentrations tested, assessed by the trypan blue dye exclusion test. The hemolytic assay showed that the cytotoxic activity of tambjamine D was not related to membrane disruption (EC50>100 microg/mL). Tambjamine D increased the number of apoptotic cells in a concentration-dependent manner at all concentrations tested according to acridine orange/ethidium bromide staining, showing that the alkaloid cytotoxic effect was related to the induction of apoptosis. MTT reduction was stimulated by tambjamine D, which may indicate the generation of reactive oxygen species. Accordingly, treatment of cells with tambjamine D increased nitrite/nitrate at all concentrations and TBARS production starting at the concentration corresponding to the IC50. Tambjamine D, also, induced DNA strand breaks and increased the micronucleus cell frequency as evaluated by comet and micronucleus tests, respectively, at all concentrations evaluated, showing a genotoxic risk induced by tambjamine D.  相似文献   

16.
Flavonoids found in common vegetables, fruits, and legumes have been shown to possess antioxidant property. This study is the first to demonstrate that one member of the flavonoid family, genistein, can induce the expression of metallothionein (a metal-binding protein with antioxidant property). We found the effect of genistein to be time- and dose-dependent (10-100 microM). The effect can be observed at both protein and mRNA levels and was synergistic to that of 30 microM zinc. Genistein was shown previously to interact with the estrogen receptor and induce gene expression similar to estrogens at a lower affinity. We thus tested the hypothesis that the effect of genistein on metallothionein expression was mediated through the steroid hormone pathway. We found that various glucocorticoids do not affect metallothionein expression in Caco-2 cells. 17Beta-estradiol at 10-100 microM (concentrations much higher than needed to activate the estrogen response element) induced metallothionein expression in Caco-2 cells. However, a synthetic estrogen, diethylstilbestrol, did not increase metallothionein level at 10 microM. 17Beta-estradiol also did not act synergistically with zinc. Thus, genistein may enhance metallothionein expression through an uncharacterized mechanism. Further studies are needed to delineate the molecular mechanism and to determine whether the expression of other genes is also affected by genistein.  相似文献   

17.
This study was designed to investigate whether genistein may ameliorate oxidative stress and nuclear factor kappaB (NFkappaB) activation in the lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cell line. Treatment of RAW 264.7 cells with genistein significantly reduced lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in a dose-dependent manner with an IC50 of 69.4 microM. Genistein at 50 microM and 100 microM concentrations reduced thiobarbituric acid-reactive substances (TBARS) accumulation, increasing the GSH level and antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase. The specific DNA-binding activities of nuclear factor kappaB (NFkappaB) on nuclear extracts from 50 microM and 100 microM genistein treatments were significantly suppressed. These results suggest that genistein has mild antioxidant activity to suppress intracellular oxidative stress and NFkappaB activation.  相似文献   

18.
Genistein, due to its recognized chemopreventive and antitumour potential, is a molecule of interest as a lead compound in drug design. Recently, we found that the novel genistein derivative, [7-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-(1?→?4)-(6-O-acetyl-hex-2-ene-α-D-erythro pyranosyl)genistein, named G21, induced aberrations in mitotic spindle formation. In the presented study, we investigated the properties of G21 relevant to its genotoxic activity. The inhibition of topoisomerase IIα activity was evaluated in decatenation assay and immunoband depletion assay, the covalent DNA-topoisomerase IIα complexes and histone ?H2AX were detected immunofluorescently. Genotoxic effects of the tested compounds were assessed in micronucleation assay. The presence of centromeres in the micronuclei and the multiplication of centrosomes were evaluated in fluorescence immunolabelled specimens. The inhibition of tubulin polymerization was measured spectrophotometrically. We found that both tested drugs were able to inhibit topoisomerase II activity; however, G21, in contrast to genistein, blocked this enzyme at the concentration far exceeding cytotoxic IC(50). We also found that both compounds caused micronucleation in DU 145 prostate cancer cells, but in contrast to genistein, G21 exhibited aneugenic activity, manifested by the presence of centromeres in micronuclei formed in cells treated with the drug. Aneugenic properties of G21 resulted from the inhibition of tubulin polymerization and centrosome disruption, not observed in the presence of genistein. The study supports and extends our previous observations that the mechanisms of cytotoxicity of genistein and its new glycosidic derivative-G21 are significantly different.  相似文献   

19.
The role of α-tocopherol (α-toco) and selenium (Se) on human lymphocyte oxidative stress and T-cells proliferation were studied by flow cytometry. We measured the hydrogen peroxide and glutathione levels in cultured human T-lymphocytes and the proliferation of their subsets: T-helper/inducer, T-suppressor/cytotoxic, and natural killer and interleukin-2 receptors upon stimulation by the mitogens phytohemaglutinin (PHA) and lipopolysaccharide (LPS). The results indicate that early stimulation by mitogens is affected by the glutathione and hydrogen peroxide status of the T-lymphocytes. The addition of 100 μM or 500 μM α-toco or 0.5 μM Se alone shows weak antioxidant and immunostimulant properties. When combined, an enhanced antioxidant and immunoregulatory effect was observed. The present findings indicate that α-toco and Se have interactive effects as oxygen radical scavengers, thus promoting human lymphocyte response to antigens. This suggests that micronutrient status is an important factor in considering when interpreting the results of in vitro assays of lymphocyte function.  相似文献   

20.
Park JH  Park E 《Mutation research》2011,718(1-2):56-61
Iron is an important element that modulates the production of reactive oxygen species, which are thought to play a causative role in biological processes such as mutagenesis and carcinogenesis. The potential genotoxicity of dietary iron has been seldom studied in human leukocyte and only few reports have investigated in human colon tumor cells. Therefore, DNA damage and repair capacity of human leukocytes were examined using comet assay for screening the potential toxicity of various iron-overloads such as ferric-nitrilotriacetate (Fe-NTA), FeSO(4), hemoglobin and myoglobin, and compared with 200μM of H(2)O(2) and HNE. The iron-overloads tested were not cytotoxic in the range of 10-1000 microM by trypan blue exclusion assay. The exposure of leukocytes to Fe-NTA (500 and 1000 microM), FeSO(4) (250-1000 microM), hemoglobin (10 microM) and myoglobin (250 microM) for 30 min induced significantly higher DNA damage than NC. Treatment with 500 and 1000 microM of Fe-NTA showed a similar genotoxic effect to H(2)O(2), and a significant higher genotoxic effect than HNE. The genotoxicity of FeSO(4) (250-1000 microM), hemoglobin (10 microM) and myoglobin (250 microM) was not significantly different from that of H(2)O(2) and HNE. Iron-overloads generated DNA strand break were rejoined from the first 1h. Their genotoxic effect was not observed at 24h. These data from this study provide additional information on the genotoxicity of iron-overloads and self-repair capacity in human leukocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号