首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
G J Morris  J Farrant 《Cryobiology》1972,9(3):173-181
Washed human erythrocytes were cooled at different rates to −196 °C in the presence of different concentrations of both penetrating and nonpenetrating cryoprotective additives, and thawed rapidly. The protective effect of albumin when ACD blood is frozen was demonstrated.  相似文献   

2.
The question addressed in the title was examined by measuring fluorescence emission spectra and light-induced fluorescence-yield changes of chloroplasts which had been frozen to -196 degrees C rapidly, as very thin samples adsorbed into substrates whick were plunged directly into liquid nitrogen, or slowly by the cooling action of liquid nitrogen through the wall of the cuvette. Contrary to previous reports, we found that the rate of cooling had no influence on the shape of the emission spectrum, the extent of the variable fluorescence or the fraction of the absorbed quanta which are delivered initially to Photosystem I.  相似文献   

3.
Five experiments evaluated the effects of processing, freezing and thawing techniques on post-thaw motility of equine sperm. Post-thaw motility was similar for sperm frozen using two cooling rates. Inclusion of 4% glycerol extender was superior to 2 or 6%. Thawing in 75 degrees C water for 7 sec was superior to thawing in 37 degrees C water for 30 sec. The best procedure for concentrating sperm, based on sperm motility, was diluting semen to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium at 20 degrees C and centrifuging at 400 x g for 15 min. There was no difference in sperm motility between semen cooled slowly in extender with or without glycerol to 5 degrees C prior to freezing to -120 degrees C and semen cooled continuously from 20 degrees C to -120 degrees C. From these experiments, a new procedure for processing, freezing and thawing semen evolved. The new procedure involved dilution of semen to 50 x 10(6) sperm/ml in centrifugation medium and centrifugation at 400 x g for 15 min, resuspension of sperm in lactose-EDTA-egg yolk extender containing 4% glycerol, packaging in 0.5-ml polyvinyl chloride straws, freezing at 10 degrees C/min from 20 degrees C to -15 degrees C and 25 degrees C/min from -15 degrees C to -120 degrees C, storage at -196 degrees C, and thawing at 75 degrees C for 7 sec. Post-thaw motility of sperm averaged 34% for the new method as compared to 22% for the old method (P<0.01).  相似文献   

4.
The principal objective of this study was to derive an improved procedure for cryopreservation of swamp buffalo (Bubalus bubalis) spermatozoa. Experiments were conducted to determine effects of cooling rate, intermediate plunge temperature and warming rate on motility and acrosome integrity of spermatozoa. Spermatozoa were obtained from three bulls (three ejaculates/bull) and were subjected to nine cooling conditions before being frozen in liquid nitrogen: cooling at 10, 20, or 30 degrees C/min each to -40, -80, or -120 degrees C before being plunged into liquid nitrogen. The spermatozoa frozen under a given condition were then thawed either at 1000 or 200 degrees C/min. Cooling rate, intermediate temperature and warming rate significantly affected survival of spermatozoa obtained from the three bulls. Cooling spermatozoa from 4 to -120 degrees C either at 20 or 30 degrees C/min yielded better progressive motility compared to other cooling conditions (50 versus 30%). Rapid warming was superior to slow warming. In an additional study, motility and fertility of spermatozoa frozen after being cooled to -120 degrees C at 20 degrees C and 30 degrees C/min and those frozen by a standard protocol used routinely for semen processing were assessed. Progressive motility of cryopreserved spermatozoa cooled at 20 degrees C and 30 degrees C/min was 40%, while that of spermatozoa cryopreserved using a standard protocol was 25%. A total of 178 buffalo cows were inseminated with cryopreserved spermatozoa obtained from one bull, and their pregnancy status was assessed 60 days later by rectal palpation. Out of the 60, 26 (43%) and 23 of 58 (40%) cows inseminated with sperm cooled at 20 and 30 degrees C/min, respectively, became pregnant, whereas 17 of 60 (28%) cows inseminated with sperm frozen by a standard protocol became pregnant. This study demonstrates that an effective cryopreservation procedure for buffalo spermatozoa can be derived by systematic examination of various cryobiological factors.  相似文献   

5.
Embryos (8-16 cell) were obtained from random bred albino mice (6-8 weeks old) that were induced to superovulate by injections of 5 I.U. PMSG and 5 I.U. hCG given 48 hr apart. Embryos were exposed to intracellular cryoprotecting medium (glycerol 10%, 1-2 propanediol 20% in PBS) for 10 min and then transferred to extracellular vitrification medium (25% glycerol, 25% 1-2 propanediol in PBS). Vitrification medium containing embryos, and diluent (1 M sucrose) were loaded in a straw and immediately plunged into liquid N2. After thawing at 20 degrees C, the contents of the straw were mixed by shaking (1 step dilution) and emptied in a petri dish. After 3 washings in culture medium the embryos were kept in CO2 incubator for further development. In 3-step dilution procedure the dilution of cryoprotectants was done in 0.5 and 0.25 M sucrose before culture. Embryos in 3-step dilution of cryoprotectants exhibited high survival as compared to 1-step dilution (20.23% vs 6.55%).  相似文献   

6.
The effect of the rate of rewarming on the survival of 8-cell mouse embryos and blastocysts was examined. The samples were slowly cooled (0.3--0.6 degrees C/min) in 1.5 M-DMSO to temperatures between -10 and -80 degrees C before direct transfer to liquid nitrogen (-196 degrees C). Embryos survived rapid thawing (275--500 degrees C/min) only when slow cooling was terminated at relatively high subzero temperatures (-10 to -50 degrees C). The highest levels of survival in vitro of rapidly thawed 8-cell embryos were obtained after transfer to -196 degrees C from -35 and -40 degrees C (72 to 88%) and of rapidly thawed blastocysts after transfer from -25 to -50 degrees C (69 to 74%). By contrast, for embryos to survive slow thawing (8 to 20 degrees C/min) slow cooling to lower subzero temperatures (-60 degrees C and below) was required before transfer to -196 degrees C. The results indicate that embryos transferred to -196 degrees C from high subzero temperatures contain sufficient intracellular ice to damage them during slow warming but to permit survival after rapid warming. Survival of embryos after rapid dilution of DMSO at room temperature was similar to that after slow (stepwise) dilution at 0 degrees C. There was no difference between the viability of rapidly and slowly thawed embryos after transfer to pseudopregnant foster mothers. It is concluded that the behaviour of mammalian embryos subjected to the stresses of freezing and thawing is similar to that of other mammalian cells. A simpler and quicker method for the preservation of mouse embryos is described.  相似文献   

7.
We have recently reported that the survival of mouse spermatozoa is decreased when they are warmed at a suboptimal rate after being frozen at an optimal rate. We proposed that this drop in survival is caused by physical damage derived from the recrystallization of extracellular ice during slow warming. The first purpose of the present study was to determine the temperatures over which the decline in survival occurs during slow warming and the kinetics of the decline at fixed subzero temperatures. The second purpose was to examine the effects of antifreeze proteins (AFP) on the survival of slowly warmed mouse spermatozoa, the rationale being that AFP have the property of inhibiting ice recrystallization. With respect to the first point, a substantial loss in motility occurred when slow warming was continued to higher than -50 degrees C and the survival of the sperm decreased with an increase in the temperature at which slow warming was terminated. In contrast, the motility of sperm that were warmed rapidly to these temperatures remained high initially but dropped with increased holding time. At -30 degrees C, most of the drop occurred in 5 min. These results are consistent with the hypothesis that damage develops as a consequence of the recrystallization of the external ice. AFP ought to inhibit such recrystallization, but we found that the addition of AFP-I, AFP-III, and an antifreeze glycoprotein at concentrations of 1-100 microg/ml did not protect the frozen-thawed cells; rather it led to a decrease in survival that was proportional to the concentration. There was no decrease in survival from exposure to the AFP in the absence of freezing. AFP are known to produce changes in the structure and habit of ice crystals, and some have reported deleterious consequences associated with those structural changes. We suggest that such changes may be the basis of the adverse effects of AFP on the survival of the sperm, especially since mouse sperm are exquisitely sensitive to a variety of mechanical stresses.  相似文献   

8.
In the present study, 2 experiments were carried out. In experiment 1, mouse spermatozoa were frozen and stored in an ultra-low temperature freezer maintained at -79 degrees C, from 1 week to 8 months. In vitro fertilization rates of the frozen-thawed sperm after 1 week and 4 months of storage were high at 71 and 71%, respectively. These values did not differ significantly from the value (73%) of the control stored at -196 degrees C. In contrast, the 8-month storage rate was significantly lower at 51%. In experiment 2, frozen spermatozoa were transported in a Styrofoam box packed in dry ice from Hokkaido to Tokyo. In vitro fertilization rate of frozen-thawed sperm after transport at -79 degrees C was high at 88%, which was not significantly different from that (84%) of the transported control at -190 degrees C. After transferring two-cell embryos derived from frozen spermatozoa to recipients, 37-62% of the embryos developed into offspring in both experiments. These results indicate that mouse spermatozoa can survive cryopreservation in an ultra-low temperature freezer (-79 degrees C) for up to 4 months and transport at -79 degrees C.  相似文献   

9.
10.
11.
After male animals die, the spermatozoa within the testis and epididymis eventually disintegrate. In this study, the motility, viability and fertility of mouse spermatozoa were examined after retrieval from the epididymis at various days after death. Cadavers were maintained in a refrigerator at 4 degrees C. About 30% of the spermatozoa collected 10 days after death were viable, but they had limited ability to fertilize oocytes in vitro. However, when the spermatozoa were injected into oocytes, the fertilization rate was over 80%. Normal live fetuses were even obtained using immotile spermatozoa retrieved 20 days after death. Therefore, when valuable male animals die unexpectedly and sperm cryopreservation is not possible immediately, temporal storage of cadavers (or epididymis and vas deferens) at 4 degrees C in a regular refrigerator followed by intracytoplasmic sperm injection may help to preserve the genome of individuals. This procedure could be particularly important in endangered species.  相似文献   

12.
13.
A successful cryopreservation procedure for sperm must guarantee recovery of the morphological and functional characteristics of the cells following thawing so that preserved semen can to be used comparably with non-preserved semen. The aim of this work was to identify a species-specific freezing protocol for sea bass (Dicentrarchus labrax) spermatozoa by optimising all the stages in the cryopreservation procedure. In the first stage of the experiments, the cryoprotectants and the relative concentrations that had the least toxic effect on motility at room temperature were selected. The capacity of the selected cryoprotectant substances was then assessed in freezing tests as follows: dimethyl sulfoxide (Me(2)SO) 5% and 7%, ethylene glycol (EG) 7% and 10%, propylene glycol (PG) 7% and 10%. The cryoprotectant that gave the best results in this second stage of the experiments was EG 10%, and this was then used for the optimisation of the different stages in the freezing procedure: two different times of adaptation to the cryoprotectant were tested (15min and 6h), as well as the effects of adding an energy substrate (1.25mM sodium pyruvate) to assess its possible use as an energy source. Lastly, using the extender (diluent+Na-pyruvate+EG10%) and the adaptation procedure (6h at 0-2 degrees C) that had given the best results in the preceding stages of the experiments, four cooling rates were tested: 10, 12, 15, 24 degrees C/min. It was shown that the semen that was diluted immediately after collection in extender that contained the cryoprotectant (EG 10%), was equilibrated for 6h at 0-2 degrees C and then cooled at a rate of 15 degrees C/min, showed motility on thawing comparable to that of fresh semen (P=0.045).  相似文献   

14.
Semen from 6 bulls was examined under the transmission electron microscope immediately after collection, after dilution and cooling to 5 degrees C and after freezing and thawing. Conception rates were determined following artificial insemination of the frozen and thawed semen. Dilution and cooling to 5 degrees C caused acrosomal swelling in about 50% of the spermatozoa. Subsequent freezing and thawing caused considerable ultrastructural changes to the acrosomes (disruption of the plasma and outer acrosomal membranes and dispersion of the acrosomal contents) and middle pieces (breakage of the plasma membrane and a reduction in the electron density of the mitochondrial matrix) of a high proportion of spermatozoa. The average non-return rate following insemination of semen from 5 of the bulls was 61.6% and higher (P greater than 0.001) than for the sixth bull (15%). Although this difference in semen viability was also demonstrated in the structural studies (acrosome, P greater than 0.05: middle piece, P greater than 0.001), more work is required to assess the relationship between structure and function of spermatozoa.  相似文献   

15.
Renal cortical slices were treated with 2.1 M cryoprotectant in RPS-2 vehicle solution, cooled at one of four rates to -40 degrees C, then immediately warmed at one of four rates to 25 degrees C for determination of the [K+]/[Na+] after a standard incubation period. Results are presented in the form of survival "topographical maps" or surfaces with the x axis representing [K+]/[Na+]; the y axis, cooling rate; and the z axis, warming rate. The rate of temperature change fell in the range of 0.5 to 10 degrees C/min. The results suggest that when RPS-2 vehicle solution is used for 2.1 M cryoprotectants, Me2SO offers the prospect for greatest post-thaw recovery. With this vehicle-cryoprotective agent combination, the greatest post-thaw recovery is attained with cooling-warming combinations of -3, +4, and -0.5, +10 degrees C/min.  相似文献   

16.
Human spermatozoa were cooled from 37 to 0 degrees C at 10 degrees C min(-1) in 5 degrees C steps with 1 min equilibration at each step, the temperature control was +/- 0.1 degrees C. Spermatozoa were held at 0 degrees C for 5 min and then rewarmed at the same rate. No significant effect of cooling on the straight-line velocity was found using computer-aided semen analysis. The physiological function of spermatozoa was also examined before and after cooling using hypoosmotic swelling, ionophore-provoked acrosome reaction, and binding to fragments of human zonae pellucidae. Spermatozoa were cooled either in seminal plasma or in conventional IVF medium with or without fractionation by centrifugation through a discontinuous Percoll gradient. When spermatozoa were cooled and rewarmed in seminal plasma there was no significant change in either the ionophore-induced acrosome reaction or the binding to zona pellucida fragments. When spermatozoa were fractionated by centrifugation through Percoll an increased response in both was seen. However, following cooling and rewarming, a significant decline in the response of both occurred. We suggest that motility alone is not a reliable predictor of changes in other physiological functions of spermatozoa following cooling. Furthermore, short-term cooling appears to have no significant detrimental effect on normozoospermic samples and cold shock may be avoided in the clinical context by controlled cooling and warming.  相似文献   

17.
18.
19.
20.
ABSTRACT: Retraction This article [1] has been retracted at the request of the Editor. Although the authors withdrew their submission in order to publish elsewhere, the article was subsequently transmitted to the journal's production department which resulted in it being published in error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号