首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低温微生物及其酶类的研究概况   总被引:8,自引:0,他引:8  
广泛分布在地球寒冷生境 ,如南北两极、高山、深海以及冰川中的低温微生物 ,不但为研究低温生态系统、生命起源与进化以及生物适冷机制提供了丰富的材料 ,同时在生物工程方面也具有潜在的巨大开发价值。国内外越来越多的科研人员对低温微生物及其产物的研究表现出了浓厚的兴趣。关于细胞膜和低温酶的研究 ,是目前微生物适冷机制研究中的 2个热点。就低温微生物的研究现状和适冷机制以及低温酶类的研究进行了综述。  相似文献   

2.
微生物对低温极端环境适应性的研究进展   总被引:1,自引:0,他引:1  
嗜冷微生物是地球寒冷环境中最主要的生物类群,并且是驱动全球生物地球化学循环的关键环节。嗜冷微生物在适应策略上显示出应对多种极端环境因素的巨大潜力,研究其适应和进化机制有助于更好地理解微生物与环境之间相互作用过程,并有效利用极端环境微生物资源。近年来,随着分子生物学和基因组学技术的高速发展,对微生物适应寒冷环境的机制及嗜冷微生物在指示气候变化和工农业应用方面均有一系列的突破。在此,本文将从基因组的GC含量、蛋白质稳定性、转录翻译调控、细胞膜流动性、渗透压调节、抗氧化损失和基因组适应性进化等方面总结当前在微生物适应低温环境机制上所取得的进展,并展望低温环境微生物在指示气候变化和工农业应用中的前景。  相似文献   

3.
食品中低温微生物的适冷机制研究进展   总被引:1,自引:0,他引:1  
低温贮藏是延长食品货架期、维持食品鲜度和质量安全的重要方法,然而仍有部分微生物能适应低温环境,使食品发生腐败变质。主要从细胞膜、适冷酶、冷休克蛋白、冷适应蛋白、代谢水平及低温防护剂等角度阐述国内外食品中低温微生物适冷机制的研究进展,为低温微生物在食品领域的应用与防护提供参考。  相似文献   

4.
The study of the molecular adaptation of microorganisms to extreme environments (solvent, temperature, etc.) has provided tools to investigate the complex relationships between protein-solvent and protein-protein interactions, protein stability and protein dynamics, and how they are modulated by the crowded environment of the cell. We have evaluated protein-solvent and protein-protein interactions by solution experiments (analytical ultracentrifugation, small angle neutron and X-ray scattering, density) and crystallography, and protein dynamics by energy resolved neutron scattering. This review concerns work from our laboratory on (i) proteins from extreme halophilic Archaea, and (ii) psychrophile, mesophile, thermophile and hyperthermophile bacterial cells.  相似文献   

5.
The growth of all microorganisms is limited to a specific temperature range. However, it has not previously been determined to what extent global protein profiles change in response to temperatures that incrementally span the complete growth temperature range of a microorganism. As a result it has remained unclear to what extent cellular processes (inferred from protein abundance profiles) are affected by growth temperature and which, in particular, constrain growth at upper and lower temperature limits. To evaluate this, 8-plex iTRAQ proteomics was performed on the Antarctic microorganism, Methanococcoides burtonii. Methanococcoides burtonii was chosen due to its importance as a model psychrophilic (cold-adapted) member of the Archaea, and the fact that proteomic methods, including subcellular fractionation procedures, have been well developed. Differential abundance patterns were obtained for cells grown at seven different growth temperatures (-2°C, 1°C, 4°C, 10°C, 16°C, 23°C, 28°C) and a principal component analysis (PCA) was performed to identify trends in protein abundances. The multiplex analysis enabled three largely distinct physiological states to be described: cold stress (-2°C), cold adaptation (1°C, 4°C, 10°C and 16°C), and heat stress (23°C and 28°C). A particular feature of the thermal extremes was the synthesis of heat- and cold-specific stress proteins, reflecting the important, yet distinct ways in which temperature-induced stress manifests in the cell. This is the first quantitative proteomic investigation to simultaneously assess the response of a microorganism to numerous growth temperatures, including the upper and lower growth temperatures limits, and has revealed a new level of understanding about cellular adaptive responses.  相似文献   

6.
Adaptation to environmental stresses, such as temperature fluctuation, is essential for the survival of all living organisms. Cellular responses in both prokaryotes and eukaryotes to high temperature include the synthesis of a set of highly conserved proteins known as the heat shock proteins. In contrast to the heat shock response, adaptation to low temperatures has not been as extensively studied. However, a family of cold-inducible proteins is evident in prokaryotes. In addition, most organisms have developed adaptive mechanisms that alter both membrane fluidity and the protein translation machinery at low temperature. This review addresses the different adaptive mechanisms used by a variety of organisms with a focus on the molecular mechanisms of cold adaptation that have recently been identified during the cold shock response in Escherichia coli. BioEssays 20:49–57, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

7.
Cold-adapted archaea   总被引:1,自引:0,他引:1  
Many archaea are extremophiles. They thrive at high temperatures, at high pressure and in concentrated acidic environments. Nevertheless, the largest proportion and greatest diversity of archaea exist in cold environments. Most of the Earth's biosphere is cold, and archaea represent a significant fraction of the biomass. Although psychrophilic archaea have long been the neglected majority, the study of these microorganisms is beginning to come of age. This review casts a spotlight on the ecology, adaptation biology and unique science that is being realized from studies on cold-adapted archaea.  相似文献   

8.
Sensing a sudden change of the growth temperature, all living organisms produce heat shock proteins or cold shock proteins to adapt to a given temperature. In a heat shock response, the heat shock sigma factor plays a major role in the induction of heat shock proteins including molecular chaperones and proteases, which are well-conserved from bacteria to human. In contrast, no such a sigma factor has been identified for the cold shock response. Instead, RNAs and RNA-binding proteins play a major role in cold shock response. This review describes what happens in the cell upon cold shock, how E. coli responds to cold shock, how the expression of cold shock proteins is regulated, and what their functions are.  相似文献   

9.
The metagenomic Csp library was constructed from the temperate and glacier soils of central Himalaya, India followed by polymerase chain reaction (PCR) amplification. The library was further screened for low-temperature adaptation, and the positive recombinants were sorted out by determining changes in the melting temperature (Tm). A homology search of cloned sequence showed their identity with the Csp genes of Pseudomonas fluorescens, Psychrobacter cryohalolentis K5, and Shewanella spp MR-4. Amino acid sequence analysis annotated the presence of conserved aromatic and basic amino acids as well as RNA binding motifs from the cold shock domain. Furthermore, a PROSITE scan showed a moderate identity of less than 60% with the known cold shock-inducible proteins (ribosomal proteins, rbfA, DEAD-box helicases), cold acclimation protein, and temperature-induced protein (SRP1/TIP1). This study highlighted the prevalence of Csp genes from cold Himalayan environments that can be explored for tailor-made crop constructions in future.  相似文献   

10.
低温微生物的冷适应机理及其应用   总被引:4,自引:0,他引:4  
张玉秀  赵微忱  于洋  李林峰 《生态学报》2008,28(8):3921-3926
低温微生物广泛分布于极地、冰川、永久冻土和深海等寒冷环境,其冷适应能力是多种机理共同作用的结果,包括酶的低温催化活性、低温下膜流动性的保持、冷休克蛋白、抗冻蛋白以及抗冻保护剂等.低温微生物主要应用于催化低温发酵、表达热不稳定蛋白质、生产抗冻保护剂和冬季治理污水等领域.  相似文献   

11.
Cryptococcus flavescens (previously reported as C. nodaensis), a biological control agent of Fusarium head blight, has been previously shown to have improved desiccation tolerance after cold adaptation. The goal of the current study was to determine the effect of cold adaptation on the physicochemical properties of C. flavescens that may be responsible for its improved desiccation tolerance. The results show that cold adaptation improves liquid hyperosmotic shock tolerance and alters the temperature dependence of osmotic shock tolerance. Fluorescence anisotropy was used to characterize differences in the membrane fluidity of C. flavescens with and without cold adaptation. Force curves from atomic force microscopy showed a significant increase in the cell wall spring constant after cold adaptation. Cold adaptation of C. flavescens during culturing was shown to produce smaller cells and produced a trend towards higher CFU yields. These results suggest that cold adaptation significantly alters the membrane properties of C. flavescens and may be an effective method of improving the desiccation tolerance of microorganisms. In addition, we provide information on the correct naming of the isolate as C. flavescens.  相似文献   

12.
Low-temperature extremophiles and their applications   总被引:32,自引:0,他引:32  
Psychrophilic (cold-adapted) organisms and their products have potential applications in a broad range of industrial, agricultural and medical processes. In order for growth to occur in low-temperature environments, all cellular components must adapt to the cold. This fact, in combination with the diversity of Archaea, Bacteria and Eucarya isolated from cold environments, highlights the breadth and type of biological products and processes that might be exploited for biotechnology. Relative to this undisputed potential, psychrophiles and their products are under-utilised in biotechnology; however, recent advances, particularly with cold-active enzymes, herald rapid growth for this burgeoning field.  相似文献   

13.
F Berger  P Normand    P Potier 《Journal of bacteriology》1997,179(18):5670-5676
By use of Arthrobacter globiformis SI55, a psychrotrophic bacterium capable of growth between -5 and +32 degrees C, we cloned and sequenced capA, a gene homologous to cspA encoding the major cold shock protein in Escherichia coli. The deduced protein sequence has a high level of identity with the sequences of other CspA-related proteins from various sources, and no particular residue or domain that could be specific to cold-adapted microorganisms emerged. We show that CapA was produced very rapidly following cold shock, but unlike its mesophilic counterparts, it was still expressed during prolonged growth at low temperature. Its synthesis is regulated at the translational level, and we showed that growth resumption following a temperature downshift correlated with CapA expression. Transient inhibitions in protein synthesis during the first stages of the cold shock response severely impaired the subsequent acclimation of A. globiformis SI55 to low temperature and delayed CapA expression. The cold shock response in A. globiformis SI55 is an adaptative process in which CapA may play a crucial role. We suggest that low-temperature acclimation is conditioned mainly by the ability of cells to restore an active translational machinery after cold shock in a process that may be different from that present in mesophiles.  相似文献   

14.
Except for several conspicuous cases, very little is known about sulfur oxidizers living in natural freshwater environments. Sulfuricella denitrificans skB26 is a psychrotolerant sulfur oxidizer recently isolated from a freshwater lake as a representative of a new genus in the class Betaproteobacteria. In this study, an approximately 3.2-Mb draft genome sequence of strain skB26 was obtained. In the draft genome, consisting of 23 contigs, a single rRNA operon, 43 tRNA genes, and 3,133 coding sequences were identified. The identified genes include those required for sulfur oxidation, denitrification, and carbon fixation. Comparative proteomic analysis was conducted to assess cold adaptation mechanisms of this organism. From cells grown at 22°C and 5°C, proteins were extracted for analysis by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry. In the cells cultured at 5°C, relative abundances of ribosomal proteins, cold shock proteins, and DEAD/DEAH box RNA helicases were increased in comparison to those at 22°C. These results suggest that maintenance of proper translation is critical for growth under low-temperature conditions, similar to the case for other cold-adapted prokaryotes.  相似文献   

15.
Trimethylamine (TMA) is common in marine environments. Although the presence of this compound in the oceans has been known for a long time, unlike the mammalian gastrointestinal tract, where TMA metabolism by microorganisms has been studied intensely, many questions remain unanswered about the microbial metabolism of marine TMA. This minireview summarizes what is currently known about the sources and fate of TMA in marine environments and the different pathways and enzymes involved in TMA metabolism in marine bacteria. This review also raises several questions about microbial TMA metabolism in the marine environments and proposes potential directions for future studies.  相似文献   

16.
17.
Persistently cold environments constitute one of our world's largest ecosystems, and microorganisms dominate the biomass and metabolic activity in these extreme environments. The stress of low temperatures on life is exacerbated in organisms that rely on photoautrophic production of organic carbon and energy sources. Phototrophic organisms must coordinate temperature-independent reactions of light absorption and photochemistry with temperature-dependent processes of electron transport and utilization of energy sources through growth and metabolism. Despite this conundrum, phototrophic microorganisms thrive in all cold ecosystems described and (together with chemoautrophs) provide the base of autotrophic production in low-temperature food webs. Psychrophilic (organisms with a requirement for low growth temperatures) and psychrotolerant (organisms tolerant of low growth temperatures) photoautotrophs rely on low-temperature acclimative and adaptive strategies that have been described for other low-temperature-adapted heterotrophic organisms, such as cold-active proteins and maintenance of membrane fluidity. In addition, photoautrophic organisms possess other strategies to balance the absorption of light and the transduction of light energy to stored chemical energy products (NADPH and ATP) with downstream consumption of photosynthetically derived energy products at low temperatures. Lastly, differential adaptive and acclimative mechanisms exist in phototrophic microorganisms residing in low-temperature environments that are exposed to constant low-light environments versus high-light- and high-UV-exposed phototrophic assemblages.  相似文献   

18.
Persistently cold environments constitute one of our world's largest ecosystems, and microorganisms dominate the biomass and metabolic activity in these extreme environments. The stress of low temperatures on life is exacerbated in organisms that rely on photoautrophic production of organic carbon and energy sources. Phototrophic organisms must coordinate temperature-independent reactions of light absorption and photochemistry with temperature-dependent processes of electron transport and utilization of energy sources through growth and metabolism. Despite this conundrum, phototrophic microorganisms thrive in all cold ecosystems described and (together with chemoautrophs) provide the base of autotrophic production in low-temperature food webs. Psychrophilic (organisms with a requirement for low growth temperatures) and psychrotolerant (organisms tolerant of low growth temperatures) photoautotrophs rely on low-temperature acclimative and adaptive strategies that have been described for other low-temperature-adapted heterotrophic organisms, such as cold-active proteins and maintenance of membrane fluidity. In addition, photoautrophic organisms possess other strategies to balance the absorption of light and the transduction of light energy to stored chemical energy products (NADPH and ATP) with downstream consumption of photosynthetically derived energy products at low temperatures. Lastly, differential adaptive and acclimative mechanisms exist in phototrophic microorganisms residing in low-temperature environments that are exposed to constant low-light environments versus high-light- and high-UV-exposed phototrophic assemblages.  相似文献   

19.
The presence and role of Archaea in artificial, human-controlled environments is still unclear. The search for Archaea has been focused on natural biotopes where they have been found in overwhelming numbers, and with amazing properties. However, they are considered as one of the major group of microorganisms that might be able to survive a space flight, or even to thrive on other planets. Although still concentrating on aerobic, bacterial spores as a proxy for spacecraft cleanliness, space agencies are beginning to consider Archaea as a possible contamination source that could affect future searches for life on other planets. This study reports on the discovery of archaeal 16S rRNA gene signatures not only in US American spacecraft assembly clean rooms but also in facilities in Europe and South America. Molecular methods revealed the presence of Crenarchaeota in all clean rooms sampled, while signatures derived from methanogens and a halophile appeared only sporadically. Although no Archaeon was successfully enriched in our multiassay cultivation approach thus far, samples from a European clean room revealed positive archaeal fluorescence in situ hybridization (FISH) signals of rod-shaped microorganisms, representing the first visualization of Archaea in clean room environments. The molecular and visual detection of Archaea was supported by the first quantitative PCR studies of clean rooms, estimating the overall quantity of Archaea therein. The significant presence of Archaea in these extreme environments in distinct geographical locations suggests a larger role for these microorganisms not only in natural biotopes, but also in human controlled and rigorously cleaned environments.  相似文献   

20.
Psychrophiles and polar regions   总被引:20,自引:0,他引:20  
Most reviews of microbial life in cold environments begin with a lament of how little is known about the psychrophilic (cold-loving) inhabitants or their specific adaptations to the cold. This situation is changing, as research becomes better focused by new molecular genetic (and other) approaches, by awareness of accelerated environmental change in polar regions, and by strong interest in the habitability of frozen environments elsewhere in the solar system. This review highlights recent discoveries in molecular adaptation, biodiversity and microbial dynamics in the cold, along with the concept of eutectophiles, organisms living at the critical interface inherent to the phase change of water to ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号