首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A number of phenylethylamines and indoleamines have been analyzed in the circumoesophageal ganglia and posterior salivary gland of the normal and pargyline-treated maleOctopus dofleini martini. -Phenylethylamine,m-tyramine, and tryptamine are present in the optic lobes in amounts of 3, 0.6, and 0.6 ng/g, and in the posterior salivary gland at levels of 1, 64, and 52 ng/g, respectively, in contrast to the much higher levels observed forp-tyramine, octopamine, dopamine, noradrenaline, and 5-hydroxytryptamine. Although pargyline causes a substantial increase in the content of -phenylethylamine,m-tyramine,p-tyramine, and tryptamine in the optic lobes, no significant changes are observed in the posterior salivary gland. Their relatively rapid metabolism suggests an active role for these amines in the function of nervous tissue in theOctopus.  相似文献   

2.
A pronounced activation of platelet monoamine oxidase (MAO) by human plasma has been observed. The activation was substrate selective, since serotonin, p-tyramine, dopamine and benzylamine were much more effective than β-phenylethylamine or tryptamine. The activator(s) in the plasma was heat stable but labile to acid hydrolysis and treatment with lipase and protease. The plasma was also found to be capable of activating partially purified MAO obtained from rat liver mitochondria. Phospholipids such as phosphatidylethanolamine were shown to activate MAO.  相似文献   

3.
The electrical properties of X-537A (lasalocid) doped lipid bilayer membranes were studied in the presence of a series of nine biogenic amines which contain β-phenylethylamine as the basic structural unit. The ionophore antibiotic was found to form charged complexes within the membrane during the transport of some of the amines. The dependence of membrane conductance on the concentration of ionophore and amine was studied. The amines are divided into three classes according to the nature of the complexes formed: (1) charged complex involving two ionophores (phenylephrine, metanephrine, and amphetamine); (2) charged complex containing three ionophores (dopamine, norepinephrine and epinephrine); and (3) no charged species formed (p- and m-tyramine and β-phenylethylamine).  相似文献   

4.
A method is described for the simultaneous extraction and separation of the trace amines 2-phenylethylamine, m-tyramine, p-tyramine, p-octopamine, normetanephrine, and 3-methoxytyramine. The method involves acetylation in aqueous solution, specific hydrolysis of phenolic acetate groups, derivatization with trifluoroacetic anhydride and analysis on a gas chromatograph equipped with an electron-capture detector. Analyses utilizing both packed glass columns and glass capillary columns are described.The method possesses the potential for quantitative as well as qualitative analysis, with one or more of the following amines employed as internal standards: benzylamine, 3-phenylpropylamine, tranylcypromine, and 2-(4-chlorophenyl)ethylamine.  相似文献   

5.
We compared the inhibitory and catalytic effects of various monoamines on forms A and B of monoamine oxidase (MAO) on mitochondrial preparations from rat brain in mixed substrate experiments. MAO activity was determined by a radioisotopic assay. MAO showed lower Km values for tryptamine and β-phenylethylamine than for tyramine and serotonin. The Km values of the untreated preparation for tyramine, tryptamine, and β-phenylethylamine obtained were the same as those of the form B enzyme and the Km value for serotonin was the same as that of the form A enzyme. Tyramine and tryptamine were competitive inhibitors of serotonin oxidation and β-phenylethylamine did not bind with form A enzyme or inhibit the oxidation of serotonin, while tyramine and tryptamine were competitive inhibitors of β-phenylethylamine oxidation. Although serotonin was not oxidized by form B enzyme, serotonin was a competitive inhibitor of β-phenylethylamine oxidation. It is suggested that rat brain mitochondrial MAO is characterized by two kinds of binding sites.  相似文献   

6.
The net rate of proximo-distal transport of tyrosine hydroxylase, dopamine β-hydroxylase, DOPA decarboxylase and choline acetyltransferase was determined by measuring the accumulation of these enzymes proximal to a ligature of the rat sciatic nerve. The rate of accumulation was constant for at least 12 h. For the enzymes involved in the biosynthesis of norepinephrine the rate of transport was correlated to their subcellular distribution and a close correlation between these two parameters was found. Dopamine β-hydroxylase, an enzyme mainly localized in the particulate fraction of the sciatic nerve, showed the fastest rate of transport (1·94 mm/h) whereas DOPA decarboxylase, exclusively located in the high-speed supernatant fluid, gave the slowest (0·63 mm/h) rate of transport. Tyrosine hydroxylase, predominantly located in the non-particulate fraction of the sciatic nerve was transported much slower (0·75 mm/h) than dopamine β-hydroxylase but still significantly (P < 0.005) faster than DOPA decarboxylase. The subcellular distribution of dopamine β-hydroxylase in ganglia did not differ significantly (0·45 > P > 0·40) from that in the sciatic nerve, but in nerve endings a greater proportion of dopamine β-hydroxylase was localized in particulate fractions. Tyrosine hydroxylase and DOPA decarboxylase were found exclusively in the non-particulate fractions of ganglia. In the nerve endings of the effector organs a small but consistent portion of tyrosine hydroxylase was found in particulate fractions, whereas DOPA decarboxylase was exclusively localized in the high-speed supernatant fluid.  相似文献   

7.
Procedures were developed for the determination of 17 circulating amines using gas chromatography-negative ion chemical ionisation mass spectrometry. The amines were quantified against their appropriate deuterated isotopomers. The mean concentrations and ranges of catecholamines and trace amines were high compared with previous studies. In comparison with nonhypertensives, plasma from hypertensives had higher concentrations of the following amines: noradrenaline (t=4.0%); normetanephrine (t=6.1%) and metanephrine (t=1.9%). There were no significant differences between 5HT levels in plasma from hypertensives and controls. The following trace amine could be detected in variable amounts in plasma:p-tyramine,m-tyramine,p-octopamine,m-octopamine,p-synephrine,m-synephrine, and salsolinol. The trace amines melatonin,N-acetyl 5HT, tryptamine, 6-hydroxymelatonin and 5-methoxytryptamine could not be detected in plasma with limits of detection lying in the range 20–100 pg ml–1.  相似文献   

8.
The subcellular distribution of acetylcholinesterase activities was studied in the striatum and cerebellum of rat brain. The highest percentage of the enzyme activity was found in the crude synaptosomal (P2) fraction, with striatum much higher than cerebellum. On sucrose density gradient centrifugation analyses all the particulate fractions (P1, P2, and P3) showed a major peak of the 10 S form of acetylcholinesterase activity with very little activity of the 4 S form of the enzyme. The 10 S/4 S ratio was much higher in striatum than in cerebellum. In the soluble fraction (100,000g supernatant) the 10 S form was less than the 4 S form in the adult rat brain, but this was reversed in the 6-day-old rat brain. After diisopropylfluorophosphate administration the recovery of acetylcholinesterase molecular forms in various subcellular fractions differed at different recovery periods. These results indicate that the distribution of molecular forms of acetylcholinesterase in rat brain differs in various subcellular fractions, and also the pattern of distribution differs in different regions of the brain as well as in adult and developing brains.  相似文献   

9.
—A mass fragmentographic method for the assay of phenylethylamine (PEA) and a number of related amines in several biological materials is described. The gas chromatographic column employed for this analysis is a 12ft 1/8 in. o.d. steel column packed with 0.5% OV22+ 2% SE54 + 1% OV210 coated on 80/100 mesh chromosorb W (HP). The mass spectral characteristics of these amines are illustrated, compared, and discussed. Of the various monoamines which could be measured, only PEA, m- and p-tyramine were detected in measurable quantities. Phenylethanolamine and p-octopamine were found in trace amounts in urine, plasma, cerebrosponal fluid, and rat brain. No diurnal variation in the urinary excretion of PEA, m- and p-tyramine was observed. Plasma concentration of PEA or p-tyramine did not significantly change 1 h after eating a breakfast. Furthermore, consuming 200 g of Cadbury milk chocolate containing about 1 mg of PEA, 0.1 mg of phenylethanolamine and 10 mg of p-tyramine did not significantly alter urine excretions of these three amines. In the brain, as has been reported by others, we found that PEA and p-tyramine are not evenly distributed and that the highest concentrations are found in the hypothalamus and caudate. From the results obtained we concluded that PEA, m- and p-tyramine are probably produced from endogenous sources and that the direct contribution of diet to their urine excretion is small.  相似文献   

10.
There has been considerable interest in recent years in possible neurochemical abnormalities in Tourette's Syndrome (TS). In studies combining neuropsychological and neurochemical measurements, we have investigated the possible roles of trace amines in this disorder. Urinary levels of free -phenylethylamine (PEA) and plasma levels of its precursor amino acid phenylalanine were decreased in TS patients when compared to values in normal children. These urinary PEA levels in TS patients were inversely related to several scores from the Tourette's Syndrome Global Scale (TSGS). Further investigation of the group of subjects with low urinary PEA indicated that they also had low levels of MHPG, normetanephrine, 5-HT andm- andp-tyramine. Patients with low PEA were also compared on an extensive battery of neuropsychological measures and observed to perform significantly worse than TS patients with normal urinary PEA levels. Biochemical measurements also suggest a possible abnormality in tryptamine turnover in TS since urinary levels of indole-3-acetic acid (IAA; the acid metabolite of tryptamine) are significantly lower in TS patients than in normal controls.  相似文献   

11.
Intraventricular injection into the rat brain of four trace amines and a catecholamine resulted in rapid exponential loss of the amines in the first 30 minutes after injection. The half-lives were: phenylethylamine 3.8 min,para-tyramine 5.1 min,meta-tyramine 7.4 min and dopamine 8.0 min. Tryptamine showed a biphasic loss with half-lives of 4.7 min (over the 5 to 10 min period) and 14.1 min (10 to 30 min). The half-lives were substantially increased by deuterium labeling at the alpha carbon position: phenylethylamine 4.8 min,para-tyramine 8.8 min,meta-tyramine 14.1 min, dopamine 13.0 min and tryptamine 6.0 min (5 to 10 min period) and 28.7 min (10 to 20 min). The loss of the amines was reduced by monoamine oxidase inhibition by pargyline hydrochloride and the deuterium isotope effect was abolished. It is noteworthy that the half-life of dopamine was similar to those of the trace amines in this time period and that the trace amine half-lives after i.v. injection was longer than those obtained from measurements of increases of concentrations of endogenous amines after MAOI in vivo and that of dopamine shorter than values calculated from turnover measurements.  相似文献   

12.
The aromatic amines tyramine and β-phenylethylamine are abundant in fermented foods. Recently, a family of human trace amine-associated receptors (hTAARs) was discovered that responds to these compounds. This study examined the expression of hTAAR genes in five human organs. Among them, the stomach expressed hTAAR1 and hTAAR9. Interestingly, more hTAAR1 was expressed in the pylorus than in the other stomach regions. The CRE-SEAP reporter assay revealed that only hTAAR1 functioned as a Gs-coupled receptor in response to tyramine and β-phenylethylamine stimulation. The β-phenylethylamine-mediated hTAAR1 activity could be potentiated using 3-isobutyl-1-methylxanthine. These data suggest that tyramine and β-phenylethylamine in fermented foods act at hTAAR1 as agonists in the pylorus of stomach.  相似文献   

13.
The present studies investigated the subcellular distribution of acetylcholine's effects upon the phosphorylation of tyrosine hydroxylase in isolated purified bovine adrenal chromaffin cells. After labeling the intact chromaffin cells with 32Pi, over 90% of the [32P]tyrosine hydroxylase was found in soluble fractions. Stimulation of the cells with acetylcholine, the natural secretagogue of chromaffin cells, increased the phosphorylation of tyrosine hydroxylase and over 90% of the increase was associated with soluble tyrosine hydroxylase. Homogenates and subcellular fractions from chromaffin cells were also prepared and phosphorylated in vitro in an attempt to optimize detection of tyrosine hydroxylase phosphorylation. In chromaffin cell homogenates, both 8-bromo-cyclic AMP and calcium increased 32P incorporation into tyrosine hydroxylase, and again over 90% of the increase was observed in soluble fractions. In the particulate fraction, phosphorylation of a band which comigrated with tyrosine hydroxylase in electrophoresis was occasionally detected but only with very long autoradiographic exposures.Tyrosine hydroxylase enzymatic activity in the isolated purified chromaffin cells was also found to be associated predominantly (approx 90%) with soluble fractions. In contrast, a large portion (40–50%) of the tyrosine hydroxylase activity from crude bovine adrenal medullae was associated with the particulate fraction.The data indicate that although tyrosine hydroxylase (and possibly kinases) can associate with particulate fractions when isolated from crude bovine adrenal medullae, the enzyme is predominantly soluble when isolated from the isolated cells. Further, the effects of acetylcholine on the isolated chromaffin cells are predominantly associated with this soluble tyrosine hydroxylase and its attendant kinases.  相似文献   

14.
Abstract— The subcellular distribution of dopamine (DA) in substantia nigra from individual male rats was studied with a fractionation procedure on microscale. After differential centrifugation the distribution of DA coincided with that of noradrenaline (NA) which can serve as a marker for synaptosomes in this area. The proportion of DA/NA concentrations was about 1–2 in most fractions. Sixty per cent of nigral DA was found in P2 (17,000 g). When P, was layered on a continuous density gradient, DA and NA peaked at the density of 1.0–1.2 M-sucrose. Since DA-containing particles covered a relatively broad range on this gradient, particles between 0.7 and 1.3 M-sucrose were collected with a discontinuous density gradient. Sixty per cent of DA from P2, was found in this subfraction. The particles containing DA could have been derived from dendrites or axon collaterals of nigrostriatal neurones or represent precursor DA in noradrenergic (NA) terminals. The role of collaterals was investigated by comparing the effect of γ-butyrolactone (GBL, 750 mg/kg, 1 h) on DA concentrations in subcellular fractions from substantia nigra and caudate-putamen. In caudate-putamen, GBL produced a marked increase of DA in total homogenates and subcellular fractions except P3, whereas DA concentrations remained unchanged in all fractions from substantia nigra. This speaks against a contribution from DA terminals. The proportion of DA contained as precursor in NA terminals was analysed after destruction of the NA input to substantia nigra by two methods. A single injection of 6-hydroxydopamine into the IV ventricle decreased nigral NA by 5574, DA only by 17%. Unilateral electrolytic lesions in the pontine tegmentum affected NA concentrations in homogenates and fraction P2 of the ipsilateral substantia nigra to a much greater extent than DA. From the results obtained with the two approaches, it is estimated that precursor DA in particulate fractions does not exceed 10%. Our observations indicate that dendrites of the DA neurones in substantia nigra can form particles which behave like synaptosomes on density gradients centrifugation; they may be termed ‘dendrosomes’. According to the proportion of DA found in the particulate fractions at least 4040% of nigral DA appear to be localised in dendrites.  相似文献   

15.
—The distribution of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) relative to that of several biochemical markers has been studied in subcellular fractions prepared from the brains of rats, aged 4 days to adult, by differential centrifugation. In the brains of 10-day-old animals fractions which sedimented at 800 g (P1 and 9000 g (P2) contained 28% and 65% respectively of the total reductase activity. A similar distribulion of the microsomal marker, NADPH-cytochrome c reductase, suggested that the HMG-CoA reductase activity in the low-speed pellets was due to substantial contamination of these fractions with endoplasmic reticulum. When P2 was fractionated on a discontinuous sucrose gradient, the distributions of protein, RNA and NADPH-cytochrome c reductase paralleled that of HMG-CoA reductase, indicaling a non-specific association of endoplasmic reliculum and HMG-CoA reductase with all of the structures sedimenting in P2. As brain maturation proceeded and a greater percentage of total brain protein (primarily associated with myelin) sedimenled in P1, the subcellular distributions of HMG-CoA reductase and the microsomal marker changed in a parallel way. By 21 days P1 contained nearly all of the reductase activity. Because the specific activity of HMG-CoA reductase in P1 decreased steadily between 4 and 21 days, while the specific activity of 2′:3′-cyclic nucleotide 3′-phosphohydrolase in this fraction increased in a coordinate fashion, we conclude that the reductase is not an integral component of myelin, and probably is associated exclusively with the endoplasmic reticulum included in P1. In view of the developmental changes in the distribution of HMG-CoA reductase among subcellular fraclions, we suggest that whole homogenates (or comparable tissue extracts) should be utilized to evaluate reductase activity in the developing brain.  相似文献   

16.
The hydroxylated phenylethylamines p-tyramine, m-tyramine, octopamine, metaraminol and norepinephrine were accumulated by homogenates of rat brain much more vigorously than β-phenethylamine or amphetamine. The affinity concentrations (Km) for initial (5-min) uptake by homogenates of whole brain were 0.5, 3 and 6 μM for DL-norepine-phrine, p-tyramine and DL-octopamine, respectively. The uptake of these three hydroxylated compounds was much more vigorous in striatal tissue than in cortical tissue, and in both tissues the rate of uptake decreased in the sequence: norepinephrine > tyramine > octopamine. The uptake of these three substances was inhibited by reduced temperature, by lack of glucose, by CN- and DNP, and by desmethylimipramine, cocaine and ouabain. The uptake of norepinephrine and octopamine appeared to require Na+. Pretreatment of rats with reserpine or 6-hydroxydopamine decreased the ability of brain to take up norepinephrine or octopamine. Previously accumulated labelled phenylethylamines migrated in sucrose density gradients with a peak of radioactivity corresponding to an equilibrium position of catecholamine-containing nerve endings. The magnitude of the retention of [3H]amine in this synaptosornal peak decreased in the order: norepinephrine > octopamine > tyramine. The accumulated amines were released by sonic, osmotic and thermal stresses which disrupt neuronal membranes. The presence of a β-hydroxyl group appeared to protect amines from destruction by monoamine oxidase, presumably by virtue of uptake in presynaptic storage vesicles. During superfusion, tyramine and metaraminol appeared to displace [3H]norepinephrine from binding sites in brain slices.  相似文献   

17.
The effect of several 2-aminotetralins (2ATs) on the uptake and release of [14C] dopamine and [3H]m- or [3H]p-tyramine by rat striatal slices was examined. 6,7-Dihydroxy-2AT (6,7OHAT) and 5,6-dihydroxy-2-methyl-AT (5,6OHMeAT) were the most potent uptake inhibitors as well as the most potent releasers of the three labeled amines. The 5-, 6-, and 7-hydroxy-2-N,N-dipropyl-ATs (5-, 6-, and 7OHdiPrAT) and 5,6-dihydroxy-2-N,N-dipropyl-AT (5,6OHdiPrAT) significantly inhibited the uptakes of the three labeled amines, but they released only the tyramines. The dipropyl substitution of a 2AT appeared to confer a tyraminergic specificity to its release properties. To verify this supposition, 2AT was compared to 2-N,N-dipropyl-AT (diPrAT). Although 2AT released both [3H]p-tyramine and [14C]dopamine, diPrAT released only [3H]p-tyramine. None of the compounds, however, differentiated betweenm- andp-tyramine. It was concluded that the release of tyramines could be implicated in the actions of some of the 2ATs and that the tyramines can be transported independently from dopamine.  相似文献   

18.
Aromatic amine dehydrogenase was purified and characterized from Alcaligenes xylosoxidans IFO13495 grown on β-phenylethylamine. The molecular mass of the enzyme was 95.5 kDa. The enzyme consisted of heterotetrameric subunits (α2β2) with two different molecular masses of 42.3 kDa and 15.2 kDa. The N-terminal amino acid sequences of the α-subunit (42.3-kDa subunit) and the β-subunit (15.2-kDa subunit) were DLPIEELXGGTRLPP and APAAGNKXPQMDDTA respectively. The enzyme had a quinone cofactor in the β-subunit and showed a typical absorption spectrum of tryptophan tryptophylquinone-containing quinoprotein showing maxima at 435 nm in the oxidized form and 330 nm in the reduced form. The pH optima of the enzyme activity for histamine, tyramine, and β-phenylethylamine were the same at 8.0. The enzyme retained full activity after incubation at 70 °C for 40 min. It readily oxidized various aromatic amines as well as some aliphatic amines. The Michaelis constants for phenazine methosulfate, β-phenylethylamine, tyramine, and histamine were 48.1, 1.8, 6.9, and 171 μM respectively. The enzyme activity was strongly inhibited by carbonyl reagents. The enzyme could be stored without appreciable loss of enzyme activity at 4 °C for one month at least in phosphate buffer (pH 7.0).  相似文献   

19.
Abstract— The distribution of some monoamines in the tissues of an echinoderm, the sunflower starfish, Pycnopodia helianthoides , has been investigated in order to ascertain whether monoamine levels are similar to those found in other Deuterostomia. Dopamine, noradrenaline and octopamine were present in the arm nerves at concentrations of 5954 ng/g, 2133 ng/g and 260 ng/g respectively. The octopamine/ noradrenaline ratio for the arm nerve was 0.12 and thus similar to the typical mammalian (deuteros-tome) ratio rather than the higher invertebrate (protostome) ratio. Trace amounts of p -tyramine, β-phenylethylamine were also present. 5-Hydroxytryptamine was not detected but tryptamine was present in high concentrations (1251 ng/g).  相似文献   

20.
Abstract: The dopamine (DA)-containing nerve terminals in the caudate nucleus arise from cell bodies located in the substantia nigra (pars compacta), and it is possible that p-tyramine- and m-tyramine-containing neurons may also exist in this nucleus. We have studied the effects of unilateral electrolytic lesions of the pars compacta in rat on levels of DA, p-tyramine, m-tyramine, and homovanillic acid in the caudate nucleus after various survival times. At 12 and 24 h following lesioning the ipsilateral level of p-tyramine was significantly reduced compared with the contralateral side, whereas the concentrations of m-tyramine, DA, and homovanillic acid were significantly increased. Thus, in the short term, the lesion results in an increase in DA turnover, which is accompanied by an increase in m-tyramine levels and a decrease in p-tyramine levels. Similar changes occur following pharmacological treatments (chlorpromazine, d-amphetamine, l-DOPA) that increase DA turnover. At survival times of 2, 11, and 25 days, the ipsilateral concentrations of m-tyramine, DA, and homovanillic acid were reduced along with p-tyramine. These longer-term alterations in amine levels are most likely a consequence of degeneration of nigro-striatal axons. Placement of a lesion 1 mm dorsal to the usual position centering on the pars compacta produced different biochemical changes from those seen after the pars compacta lesion. One day following this lesion the concentration of p-tyramine was slightly reduced; DA was unaffected, but the concentration of m-tyramine was profoundly increased, even more so than after the pars compacta lesion. This could indicate the existence of specific m-tyramine-containing cell bodies located dorsal to the substantia nigra. The results suggest that p- and m-tyramine in the caudate nucleus originate from neurons in or close to the substantia nigra. The results in the short term following the lesion support the observation that there is an inverse relationship between p-tyramine concentration and DA turnover in the caudate nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号