首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human gastrointestinal (GI) tract harbors a complex community of bacterial cells in the mucosa, lumen, and feces. Since most attention has been focused on bacteria present in feces, knowledge about the mucosa-associated bacterial communities in different parts of the colon is limited. In this study, the bacterial communities in feces and biopsy samples from the ascending, transverse, and descending colons of 10 individuals were analyzed by using a 16S rRNA approach. Flow cytometric analysis indicated that 10(5) to 10(6) bacteria were present in the biopsy samples. To visualize the diversity of the predominant and the Lactobacillus group community, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was performed. DGGE analysis and similarity index comparisons demonstrated that the predominant mucosa-associated bacterial community was host specific and uniformly distributed along the colon but significantly different from the fecal community (P < 0.01). The Lactobacillus group-specific profiles were less complex than the profiles reflecting the predominant community. For 6 of the 10 individuals the community of Lactobacillus-like bacteria in the biopsy samples was similar to that in the feces. Amplicons having 99% sequence similarity to the 16S ribosomal DNA of Lactobacillus gasseri were detected in the biopsy samples of nine individuals. No significant differences were observed between healthy and diseased individuals. The observed host-specific DGGE profiles of the mucosa-associated bacterial community in the colon support the hypothesis that host-related factors are involved in the determination of the GI tract microbial community.  相似文献   

2.
The human gastrointestinal (GI) tract harbors a complex community of bacterial cells in the mucosa, lumen, and feces. Since most attention has been focused on bacteria present in feces, knowledge about the mucosa-associated bacterial communities in different parts of the colon is limited. In this study, the bacterial communities in feces and biopsy samples from the ascending, transverse, and descending colons of 10 individuals were analyzed by using a 16S rRNA approach. Flow cytometric analysis indicated that 105 to 106 bacteria were present in the biopsy samples. To visualize the diversity of the predominant and the Lactobacillus group community, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was performed. DGGE analysis and similarity index comparisons demonstrated that the predominant mucosa-associated bacterial community was host specific and uniformly distributed along the colon but significantly different from the fecal community (P < 0.01). The Lactobacillus group-specific profiles were less complex than the profiles reflecting the predominant community. For 6 of the 10 individuals the community of Lactobacillus-like bacteria in the biopsy samples was similar to that in the feces. Amplicons having 99% sequence similarity to the 16S ribosomal DNA of Lactobacillus gasseri were detected in the biopsy samples of nine individuals. No significant differences were observed between healthy and diseased individuals. The observed host-specific DGGE profiles of the mucosa-associated bacterial community in the colon support the hypothesis that host-related factors are involved in the determination of the GI tract microbial community.  相似文献   

3.
The aim of the present study was to examine the effects of feeding diets with addition of disodium fumarate (DF) to goats on ruminal metabolism and changes of rumen bacterial communities. Four cannulated goats were used in a 4 × 4 Latin square design. The results showed that ruminal pH increased linearly (P<0.01)as the amount of DF added increased, while lactate production decreased linearly (P<0.01). DF addition did not affect the production of acetate, propionate, butyrate, TVFA and NH3-N. The effect of DF on the changes in rumen bacterial-community structure of goats was analyzed using 16S rDNA-based approaches. Amplicons of the V6-V8 variable regions of bacterial 16S rDNA were analyzed by denaturing gradient gel electrophoresis (DGGE), cloning and sequencing. Differences in rumen bacterial community structure were determined based on the Shannon index of diversity for pairwise comparison of the DGGE fingerprints and revealed significant changes in rumen microbiota after DF addition. As compared with those fed with the control diet, goats fed on the diets with DF addition showed a higher bacterial diversity. The sequences of seven amplicons in total 11 clones showed less than 97% similarity with those of previously identified or unidentified bacteria, suggesting that most bacteria in the gastrointestinal tract have not been cultured or identified. Amplicons related to Succinivibrio dextrinosolvens species were found in most DGGE fingerprints derived from goats on the diet containing DF, but not in goats on the control diet. These results demonstrated the ability of DF to improve the metabolism of rumen lactate fermentation and to influence the bacterial composition of the rumen in goats.  相似文献   

4.
变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化   总被引:39,自引:4,他引:39  
利用PCR和DGGE技术分析了12头仔猪在断奶后其粪样细菌区系的变化。粪样细菌16S rDNA的V6~V8可变区经PCR扩增,扩增产物经DGGE电泳后再进行相似性分析。结果表明,仔猪断奶当天粪样 DGGE谱带少,同窝仔猪间图谱相似。断奶后,随着断奶时间的推移,每头仔猪的DGGE图谱带逐渐增多,变得复杂和多样,仔猪个体间DGGE图谱差异逐渐增大。仔猪是否同窝以及所采食日粮类型对DGGE图谱没有明显影响。相似性分析还表明,日粮中添加寡果糖的仔猪在断奶后第1周,其粪样微生物区系变化迅速,而后缓慢。  相似文献   

5.
AIMS: To investigate which specific bacterial species that were stimulated or inhibited in the proximal colon of pigs when a fructan-rich diet was compared with a diet that contained resistant carbohydrates. The study focussed especially on Bifidobacterial species by using a noncultureable approach. METHODS AND RESULTS: Terminal restriction fragment length polymorphism (T-RFLP) was used to describe differences in the total colonic microbiota as well as in the populations of Bifidobacterium spp. in pigs fed with a fructan-rich diet and a diet containing resistant carbohydrates. The fructan-rich diet has previously been shown to prevent swine dysentery caused by Brachyspira hyodysenteriae. The T-RFLP profiling, 16S rRNA gene cloning and in situ hybridization showed that the pigs fed with the fructan-rich diet had a higher proportion of Bifidobacterium thermacidophilum subsp. porcinum and Megasphaera elsdenii. CONCLUSIONS: These findings suggested that the bacterial fructan fermentation occurring in the porcine colon might be cross-feeding of lactate produced by B. thermacidophilum and used by M. elsdenii. SIGNIFICANCE AND IMPACT OF THE STUDY: B. thermacidophilum and M. elsdenii may be the course of the inhibition of the pathogenic bacteria Brach. hyodysenteriae in colon of pigs when they are fed fructan-rich diets.  相似文献   

6.
Using 16S rRNA gene-based approaches, we analyzed the responses of ileal and colonic bacterial communities of weaning piglets to dietary addition of four fermentable carbohydrates (inulin, lactulose, wheat starch, and sugar beet pulp). An enriched diet and a control diet lacking these fermentable carbohydrates were fed to piglets for 4 days (n = 48), and 10 days (n = 48), and the lumen-associated microbiota were compared using denaturing gradient gel electrophoresis (DGGE) analysis of amplified 16S rRNA genes. Bacterial diversities in the ileal and colonic samples were measured by assessing the number of DGGE bands and the Shannon index of diversity. A higher number of DGGE bands in the colon (24.2 +/- 5.5) than in the ileum (9.7 +/- 4.2) was observed in all samples. In addition, significantly higher diversity, as measured by DGGE fingerprint analysis, was detected in the colonic microbial community of weaning piglets fed the fermentable-carbohydrate-enriched diet for 10 days than in the control. Selected samples from the ileal and colonic lumens were also investigated using fluorescent in situ hybridization (FISH) and cloning and sequencing of the 16S rRNA gene. This revealed a prevalence of Lactobacillus reuteri in the ileum and Lactobacillus amylovorus-like populations in the ileum and the colon in the piglets fed with fermentable carbohydrates. Newly developed oligonucleotide probes targeting these phylotypes allowed their rapid detection and quantification in the ileum and colon by FISH. The results indicate that addition of fermentable carbohydrates supports the growth of specific lactobacilli in the ilea and colons of weaning piglets.  相似文献   

7.
Using 16S rRNA gene-based approaches, we analyzed the responses of ileal and colonic bacterial communities of weaning piglets to dietary addition of four fermentable carbohydrates (inulin, lactulose, wheat starch, and sugar beet pulp). An enriched diet and a control diet lacking these fermentable carbohydrates were fed to piglets for 4 days (n = 48), and 10 days (n = 48), and the lumen-associated microbiota were compared using denaturing gradient gel electrophoresis (DGGE) analysis of amplified 16S rRNA genes. Bacterial diversities in the ileal and colonic samples were measured by assessing the number of DGGE bands and the Shannon index of diversity. A higher number of DGGE bands in the colon (24.2 ± 5.5) than in the ileum (9.7 ± 4.2) was observed in all samples. In addition, significantly higher diversity, as measured by DGGE fingerprint analysis, was detected in the colonic microbial community of weaning piglets fed the fermentable-carbohydrate-enriched diet for 10 days than in the control. Selected samples from the ileal and colonic lumens were also investigated using fluorescent in situ hybridization (FISH) and cloning and sequencing of the 16S rRNA gene. This revealed a prevalence of Lactobacillus reuteri in the ileum and Lactobacillus amylovorus-like populations in the ileum and the colon in the piglets fed with fermentable carbohydrates. Newly developed oligonucleotide probes targeting these phylotypes allowed their rapid detection and quantification in the ileum and colon by FISH. The results indicate that addition of fermentable carbohydrates supports the growth of specific lactobacilli in the ilea and colons of weaning piglets.  相似文献   

8.
Our understanding of the ruminal epithelial tissue-associated bacterial (defined as epimural bacteria in this study) community is limited. In this study, we aimed to determine whether diet influences the diversity of the epimural bacterial community in the bovine rumen. Twenty-four beef heifers were randomly assigned to either a rapid grain adaptation (RGA) treatment (n = 18) in which the heifers were allowed to adapt from a diet containing 97% hay to a diet containing 8% hay over 29 days or to the control group (n = 6), which was fed 97% hay. Rumen papillae were collected when the heifers were fed 97%, 25%, and 8% hay diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR analysis were used to characterize rumen epimural bacterial diversity and to estimate the total epimural bacterial population (copy numbers of the 16S rRNA gene). The epimural bacterial diversity from RGA heifers changed (P = 0.01) in response to the rapid dietary transition, whereas it was not affected in control heifers. A total of 88 PCR-DGGE bands were detected, and 44 were identified from phyla including Firmicutes, Bacteroidetes, and Proteobacteria. The bacteria Treponema sp., Ruminobacter sp., and Lachnospiraceae sp. were detected only when heifers were fed 25% and 8% hay diets, suggesting the presence of these bacteria is the result of adaptation to the high-grain diets. In addition, the total estimated population of rumen epimural bacteria was positively correlated with molar proportions of acetate, isobutyrate, and isovalerate, suggesting that they may play a role in volatile fatty acid metabolism in the rumen.  相似文献   

9.
This study was designed to evaluate the effects of algal and yeast β-glucans on the porcine gastrointestinal microbiota, specifically the community of Lactobacillus, Bifidobacterium and coliforms. A total of 48 pigs were fed four diets over a 28-day period to determine the effect that each had on these communities. The control diet consisted of wheat and soya bean meal. The remaining three diets contained wheat and soya bean meal supplemented with β-glucan at 250 g/tonne from Laminaria digitata, Laminaria hyperborea or Saccharomyces cerevisiae. Faecal samples were collected from animals before feeding each diet and after the feeding period. The animals were slaughtered the following day and samples were collected from the stomach, ileum, caecum, proximal colon and distal colon. Alterations in Lactobacillus in the gastrointestinal tract (GIT) were analysed using denaturing gradient gel electrophoresis (DGGE) profiles generated by group-specific 16S rRNA gene PCR amplicons. Plate count analysis was also performed to quantify total coliforms. DGGE profiles indicated that all β-glucan diets provoked the emergence of a richer community of Lactobacillus. The richest community of lactobacilli emerged after feeding L. digitata (LD β-glucan). Plate count analysis revealed that the L. hyperborea (LH β-glucan) diet had a statistically significant effect on the coliform counts in the proximal colon in comparison with the control diet. β-glucan from L. digitata and S. cerevisiae also generally reduced coliforms but to a lesser extent. Nevertheless, the β-glucan diets did not significantly reduce levels of Lactobacillus or Bifidobacterium. DGGE analysis of GIT samples indicated that the three β-glucan diets generally promoted the establishment of a more varied range of Lactobacillus species in the caecum, proximal and distal colon. The LH β-glucan had the most profound reducing effect on coliform counts when compared with the control diet and diets supplemented with L. digitata and S. cerevisiae β-glucans.  相似文献   

10.
The phylogenetic diversity of the intestinal bacterial community in pigs was studied by comparative 16S ribosomal DNA (rDNA) sequence analysis. Samples were collected from a total of 24 pigs representing a variety of diets, ages, and herd health status. A library comprising 4,270 cloned 16S rDNA sequences obtained directly by PCR from 52 samples of either the ileum, the cecum, or the colon was constructed. In total, 375 phylotypes were identified using a 97% similarity criterion. Three hundred nine of the phylotypes (83%) had a <97% sequence similarity to any sequences in the database and may represent yet-uncharacterized bacterial genera or species. The phylotypes were affiliated with 13 major phylogenetic lineages. Three hundred four phylotypes (81%) belonged to the low-G+C gram-positive division, and 42 phylotypes (11.2%) were affiliated with the Bacteroides and Prevotella group. Four clusters of phylotypes branching off deeply within the low-G+C gram-positive bacteria and one in the Mycoplasma without any cultured representatives were found. The coverage of all the samples was 97.2%. The relative abundance of the clones approximated a lognormal distribution; however, the phylotypes detected and their abundance varied between two libraries from the same sample. The results document that the intestinal microbial community is very complex and that the majority of the bacterial species colonizing the gastrointestinal tract in pigs have not been characterized.  相似文献   

11.
呼伦贝尔草原不同退化梯度土壤细菌多样性季节变化   总被引:3,自引:0,他引:3  
为了研究草地退化程度与土壤微生物多样性的关系,在呼伦贝尔草地上选取羊草草甸草原和贝加尔针茅草甸草原两个典型放牧点,按照轻度、中度和重度划分取样点,分别于6、8月份和10月份3个不同季节采集土壤样品。应用变性梯度凝胶电泳技术(PCR-DGGE)研究两个放牧地点不同退化程度、不同季节草地的细菌群落结构变化。结果表明,呼伦贝尔草地不同退化梯度的草地土壤中细菌种类较为丰富。从丰富度和Shannon-Winner指数的变化看,两个放牧点8月份丰富度和Shannon-Winner指数最高,8月份的丰富度平均为32.4,比6月和10月份分别高11%和7.4%;8月份Shannon-Winner指数平均为4.15,比6月和10月份分别高7.7%和5.4%。DGGE图谱聚类分析结果显示,随着季节变化和草地退化程度由轻至重的变化,土壤中的细菌优势种群没有受到明显的影响。回收DGGE图谱中10个条带进行测序分析,结果显示,所有序列与GenBank数据库中的相似度在87%100%之间。基于98%的相似度,可将其中的7个鉴定为Proteobacteria(变形菌门),将其中的1个鉴定为Actinobacteria(放线菌门)。另外2个同已知序列相似性较低,可能是未知的细菌。结果表明,Proteobacteria(变形菌门)为呼伦贝尔草原土壤中的优势细菌类群,尽管所选取样点草地植被有不同程度的退化,但土壤微生物优势种群并没有发生变化。  相似文献   

12.
Treponema spp. are a commonly detected bacterial group in the rumen that are involved in the degradation of soluble fibers. In this study, a ruminal Treponema group-specific PCR primer targeting the 16S rRNA gene was designed and used to assess the phylogenetic diversity and diet association of this group in sheep rumen. Total DNA was extracted from rumen digesta of three sheep fed a diet based on alfalfa/orchardgrass hay or concentrate. The real-time PCR quantification indicated that the relative abundance of the Treponema group in the total rumen bacteria was as high as 1.05%, while the known species Treponema bryantii accounted for only 0.02%. Fingerprints of the Treponema community determined by 16S rDNA-targeted denaturing gradient gel electrophoresis (DGGE) analysis tended to differ among the diets. Principal component analysis of the DGGE profiles distinguished those Treponema associated with either the hay or the concentrate diets. Analysis of a Treponema 16S rRNA gene clone library showed phylogenetically distinct operational taxonomic units for a specific dietary condition, and significant (P=0.001) differences in community composition were observed among clone libraries constructed from each dietary regimen. The majority of clones (75.4%) had <97% sequence similarity with known Treponema. These results suggest the predominance of uncultured Treponema that appear to have distinct members related to the digestion of either hay or concentrate diet.  相似文献   

13.
The objective of this study was to compare the automated ribosomal intergenic spacer analysis (ARISA) and the denaturing gradient gel electrophoresis (DGGE) techniques for analysing the effects of diet on diversity in bacterial pellets isolated from the liquid (liquid-associated bacteria (LAB)) and solid (solid-associated bacteria (SAB)) phase of the rumen. The four experimental diets contained forage to concentrate ratios of 70:30 or 30:70 and had either alfalfa hay or grass hay as forage. Four rumen-fistulated animals (two sheep and two goats) received the diets in a Latin square design. Bacterial pellets (LAB and SAB) were isolated at 2 h post-feeding for DNA extraction and analysed by ARISA and DGGE. The number of peaks in individual samples ranged from 48 to 99 for LAB and from 41 to 95 for SAB with ARISA, and values of DGGE-bands ranged from 27 to 50 for LAB and from 18 to 45 for SAB. The LAB samples from high concentrate-fed animals tended (p < 0.10) to show greater peak numbers and Shannon index values than those isolated from high forage-fed animals with ARISA, but no differences were identified with DGGE. The SAB samples from high concentrate-fed animals had lower (< 0.05) peak numbers and Shannon index values than those from animals fed high-forage diets with ARISA, but only a trend was noticed for these parameters with DGGE (< 0.10). The ARISA detected that animals fed alfalfa hay diets showed lower (< 0.05) SAB diversity than those fed grass hay diets, but no differences were observed with DGGE. No effect of forage type on LAB diversity was detected by any technique. In this study, ARISA detected some changes in ruminal bacterial communities that were not detected by DGGE, and therefore ARISA was considered more appropriate for assessing bacterial diversity of ruminal bacterial pellets. The results highlight the impact of the fingerprinting technique used to draw conclusions on dietary factors affecting bacterial diversity in ruminal bacterial pellets.  相似文献   

14.
Bacterial populations from gastrointestinal tracts of genetically lean and obese pigs fed a low- or high-fiber diet (0 or 50% alfalfa meal, respectively) were enumerated with rumen fluid media and specific energy sources. Total culture counts in rectal samples declined 56 (P greater than 0.05) and 63% (P less than 0.05) in lean and obese animals, respectively, 3 weeks after feeding the high-fiber diet. After 8 weeks, culture counts had risen and were similar to those obtained before alfalfa was fed (0 week). At slaughter, 12 to 17 weeks after feeding the high-fiber diet, total counts from rectal samples of lean pigs continued to rise and were 13% greater than the 0-week counts, whereas counts from obese animals declined 37% (P greater than 0.05). The number of cellulolytic bacteria in rectal samples of lean-genotype pigs fed the high-fiber diet increased 80 and 71% from 0 to 3 weeks and 3 to 8 weeks, respectively. This overall increases from 0 to 8 weeks in lean pigs was significant (P less than 0.05); however, these increases were not seen in obese pigs. These data suggest that the microflora is initially suppressed when exposed to a high-fiber diet and that later some adaptation takes place, apparently more so in lean than in obese pigs. When specific energy sources were used to delineate the distribution of different bacterial populations in the cecum, colon, and rectum, trends could be detected between high- and low-fiber diets. These data also support the concept that bacteria populations from different sites in the large bowel differ.  相似文献   

15.
Bacterial communities in the large intestines of pigs were compared using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting the 16S ribosomal DNA. The pigs were fed different experimental diets based on either modified standard feed or cooked rice supplemented with dietary fibers. After feeding of the animals with the experimental diets for 2 weeks, differences in the bacterial community structure in the spiral colon were detected in the form of different profiles of terminal restriction fragments (T-RFs). Some of the T-RFs were universally distributed, i.e., they were found in all samples, while others varied in distribution and were related to specific diets. The reproducibility of the T-RFLP profiles between individual animals within the diet groups was high. In the control group, the profiles remained unchanged throughout the experiment and were similar between two independent but identical experiments. When the animals were experimentally infected with Brachyspira hyodysenteriae, causing swine dysentery, many of the T-RFs fluctuated, suggesting a destabilization of the microbial community.  相似文献   

16.
Bacterial communities in the large intestines of pigs were compared using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting the 16S ribosomal DNA. The pigs were fed different experimental diets based on either modified standard feed or cooked rice supplemented with dietary fibers. After feeding of the animals with the experimental diets for 2 weeks, differences in the bacterial community structure in the spiral colon were detected in the form of different profiles of terminal restriction fragments (T-RFs). Some of the T-RFs were universally distributed, i.e., they were found in all samples, while others varied in distribution and were related to specific diets. The reproducibility of the T-RFLP profiles between individual animals within the diet groups was high. In the control group, the profiles remained unchanged throughout the experiment and were similar between two independent but identical experiments. When the animals were experimentally infected with Brachyspira hyodysenteriae, causing swine dysentery, many of the T-RFs fluctuated, suggesting a destabilization of the microbial community.  相似文献   

17.
Bacterial populations from gastrointestinal tracts of genetically lean and obese pigs fed a low- or high-fiber diet (0 or 50% alfalfa meal, respectively) were enumerated with rumen fluid media and specific energy sources. Total culture counts in rectal samples declined 56 (P greater than 0.05) and 63% (P less than 0.05) in lean and obese animals, respectively, 3 weeks after feeding the high-fiber diet. After 8 weeks, culture counts had risen and were similar to those obtained before alfalfa was fed (0 week). At slaughter, 12 to 17 weeks after feeding the high-fiber diet, total counts from rectal samples of lean pigs continued to rise and were 13% greater than the 0-week counts, whereas counts from obese animals declined 37% (P greater than 0.05). The number of cellulolytic bacteria in rectal samples of lean-genotype pigs fed the high-fiber diet increased 80 and 71% from 0 to 3 weeks and 3 to 8 weeks, respectively. This overall increases from 0 to 8 weeks in lean pigs was significant (P less than 0.05); however, these increases were not seen in obese pigs. These data suggest that the microflora is initially suppressed when exposed to a high-fiber diet and that later some adaptation takes place, apparently more so in lean than in obese pigs. When specific energy sources were used to delineate the distribution of different bacterial populations in the cecum, colon, and rectum, trends could be detected between high- and low-fiber diets. These data also support the concept that bacteria populations from different sites in the large bowel differ.  相似文献   

18.
Bacteria from swine feces were grown in continuous culture with starch as the sole carbohydrate in order to monitor changes during fermentation and to determine how similar fermenter communities were to each other. DNA extracted from fermenter samples was analyzed by denaturing gradient gel electrophoresis (DGGE). A significant decrease in diversity was observed, the Shannon–Weaver index dropped from 1.92 to 1.13 after 14 days of fermentation. Likewise, similarity of fermenter communities to those in the fecal inoculum also decreased over time. Both diversity and similarity to the inoculum decreased most rapidly in the first few days of fermentation, reflecting a period of adaptation. Sequencing of DGGE bands indicated that the same species were present in replicate fermenters. Most of these bacteria were placed in the Clostridium coccoides/Eubacterium rectale group (likely saccharolytic butyrate producers), a dominant bacterial group in the intestinal tract of pigs. DGGE proved useful to monitor swine fecal communities in vitro and indicated the selection and maintenance of native swine intestinal bacteria during continuous culture.  相似文献   

19.
The phylogenetic diversity of the intestinal bacterial community in pigs was studied by comparative 16S ribosomal DNA (rDNA) sequence analysis. Samples were collected from a total of 24 pigs representing a variety of diets, ages, and herd health status. A library comprising 4,270 cloned 16S rDNA sequences obtained directly by PCR from 52 samples of either the ileum, the cecum, or the colon was constructed. In total, 375 phylotypes were identified using a 97% similarity criterion. Three hundred nine of the phylotypes (83%) had a <97% sequence similarity to any sequences in the database and may represent yet-uncharacterized bacterial genera or species. The phylotypes were affiliated with 13 major phylogenetic lineages. Three hundred four phylotypes (81%) belonged to the low-G+C gram-positive division, and 42 phylotypes (11.2%) were affiliated with the Bacteroides and Prevotella group. Four clusters of phylotypes branching off deeply within the low-G+C gram-positive bacteria and one in the Mycoplasma without any cultured representatives were found. The coverage of all the samples was 97.2%. The relative abundance of the clones approximated a lognormal distribution; however, the phylotypes detected and their abundance varied between two libraries from the same sample. The results document that the intestinal microbial community is very complex and that the majority of the bacterial species colonizing the gastrointestinal tract in pigs have not been characterized.  相似文献   

20.
16S rDNA技术研究新生腹泻仔猪粪样细菌区系的多样性变化   总被引:11,自引:2,他引:11  
用PCR/DGGE技术跟踪一窝5头新生腹泻仔猪自然康复、补饲、断奶过程中粪样细菌区系的演变,构建3头仔猪42日龄粪样的16S rDNA克隆库,分析匹配于DGGE优势谱带23个克隆的16S rDNA序列。结果表明,DGGE图谱由简单(2日龄)到复杂(10日龄),再回复简单(16日龄)到复杂(断奶),最后趋于稳定。2、16日龄DGGE图谱最简单、相似,最优势谱带为大肠杆菌;10日龄(补饲后3天)图谱复杂,大肠杆菌存在但不是最优势谱带,补饲前后图谱的相似性低,补饲导致了粪样细菌区系结构的显著变化;断奶前(27日龄)和后(35、42日龄)图谱复杂,优势谱带、图谱相似性均趋向稳定。序列分析表明,23个克隆中除5个与未知细菌最相似外,其余最相似菌分属于肠球菌(Enterococcus),链球菌(Streptococcus),梭菌(Clostridium),消化链球菌(Peptostreptococcus)和乳酸杆菌(Lactobacillus)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号