首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the structure of the flock house virus B2 protein, a potent suppressor of RNA interference (RNAi) in animals and plants. The B2 protein is a homodimer in solution and contains three alpha-helices per monomer. Chemical shift perturbation shows that an antiparallel arrangement of helices (alpha2/alpha2') forms an elongated binding interface with double-stranded RNA (dsRNA). This implies a novel mode of dsRNA recognition and provides insights into the mechanism of RNAi suppression by B2.  相似文献   

2.
The extent of binding of various RNA species to the three forms of avian sarcoma virus B77 RNA-dependent DNA polymerase was determined using a sensitive nitrocellulose filter binding technique which was capable of detecting binding reactions with association constants as low as 3 X 10(6) liters X mole-1. All three enzyme forms, alphabeta, beta2, and alpha, bound to all single-stranded RNA species that were tested, including nonviral RNAs. 70 S viral RNA exhibited the highest association constant (about 10(11) liters X mole-1), and a population of virus-derived tRNA molecules from which tRNATrp had been removed, the lowest (about 3000 times lower). The affinity for other RNAs was roughly proportional to their size. The affinity of RNAs for the alphabeta enzyme form always exceeded that for the two others by a factor that depended on the particular RNA, never exceeded 6 and was sometimes as low as 1.2. The association constant of the alphabeta enzyme form with viral 70 S RNA was about 15-fold higher than that with viral 35 S RNA. 35 S RNA annealed to tRNATrp had an association constant that was only 2.5 times higher than that of 35 S RNA alone. This finding suggests that the tertiary structure of 70 S RNA plays a significant role in its affinity for B77 DNA polymerase.  相似文献   

3.
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B) receptor-binding protein that associates specifically with the GABA(B)R1 subunit in yeast, tissue culture cells, and neurons. Marlin-1 is expressed in the brain and exhibits a granular distribution in cultured hippocampal neurons. Marlin-1 binds different RNA species including the 3'-untranslated regions of both the GABA(B)R1 and GABA(B)R2 mRNAs in vitro and also associates with RNA in cultured neurons. Inhibition of Marlin-1 expression via small RNA interference technology results in enhanced intracellular levels of the GABA(B)R2 receptor subunit without affecting the level of GABA(B)R1. Together our results suggest that Marlin-1 functions to regulate the cellular levels of GABA(B) R2 subunits, which may have significant effects on the production of functional GABA(B) receptor heterodimers. Therefore, our observations provide an added level of regulation for the control of GABA(B) receptor expression and for the efficacy of inhibitory synaptic transmission.  相似文献   

4.
Black beetle virus: messenger for protein B is a subgenomic viral RNA   总被引:16,自引:13,他引:3       下载免费PDF全文
Black beetle virus induces the synthesis of three new proteins, protein A (molecular weight, 104,000), protein α (molecular weight, 47,000), and protein B (molecular weight, 10,000), in infected Drosophila cells. Two of these proteins, A and α, are known to be encoded by black beetle virus RNAs 1 and 2, respectively, extracted from virions. We found that RNA extracted from infected cells directed the synthesis of all three proteins when it was added to a cell-free protein-synthesizing system. When polysomal RNA was fractionated on a sucrose density gradient, the messengers for proteins A and α cosedimented with viral RNAs 1 (22S) and 2 (15S), respectively. However, the messenger for protein B was a 9S RNA (RNA 3) not found in purified virions. Like the synthesis of viral RNAs 1 and 2, intracellular synthesis of RNA 3 was not affected by the drug actinomycin D at concentrations which blocked synthesis of host cell RNA. This indicated that RNA 3 is a virus-specific subgenomic RNA and, therefore, that protein B is a virus-encoded protein.  相似文献   

5.
We synthesized three 20mer caged circular antisense oligodeoxynucleotides (R20, R20B2 and R20B4) with a photocleavable linker and an amide bond linker between two 10mer oligodeoxynucleotides. With these caged circular antisense oligodeoxynucleotides, RNA-binding affinity and its digestion by ribonuclease H were readily photomodulated. RNA cleavage rates were upregulated ∼43-, 25- and 15-fold for R20, R20B2 and R20B4, respectively, upon light activation in vitro. R20B2 and R20B4 with 2- or 4-nt gaps in the target RNA lost their ability to bind the target RNA even though a small amount of RNA digestion was still observed. The loss of binding ability indicated promising gene photoregulation through a non-enzymatic strategy. To test this strategy, three caged circular antisense oligonucleotides (PS1, PS2 and PS3) with 2′-OMe RNA and phosphorothioate modifications were synthesized to target GFP expression. Upon light activation, photomodulation of target hybridization and GFP expression in cells was successfully achieved with PS1, PS2 and PS3. These caged circular antisense oligonucleotides show promising applications of photomodulating gene expression through both ribonuclease H and non-enzyme involved antisense strategies.  相似文献   

6.
The six "core" proteins of HeLa cell 40S nuclear ribonucleoprotein particles (hnRNP particles) package 700-nucleotide lengths of pre-mRNA into a repeating array of regular particles. We have previously shown that the C proteins exist as anisotropic tetramers of (C1)3C2 in 40S hnRNP particles and that each particle probably contains three such tetramers. We report here that proteins A2 and B1 also exist in monoparticles as (A2)3B1 tetramers and that each monoparticle contains at least three such tetramers. Proteins A2 and B1 dissociate from isolated monoparticles as a stable tetramer upon nuclease digestion. In low-salt gradients, the tetramers sediment at 6.8S, which is consistent with a mass of 145 kDa. In 200 mM salt, the concentration which dissociates these proteins from RNA, only 4.2S dimers exist in solution. Tetramers of (A2)3B1 possess the ability to package multiples of 700 nucleotides of RNA in vitro into an array of regular, 22.5-nm 43S particles. Unlike the in vitro assembly of intact 40S hnRNP, the (A2)3B1 tetramers assemble by means of a highly cooperative process. These findings indicate that the (A2)3B1 tetramers play a major role in hnRNP assembly and they further support the contention that 40S monoparticles are regular structures composed of three copies of three different tetramers, i.e., 3[(A1)3B2, (A2)3B1, (C1)3C2].  相似文献   

7.
8.
9.
10.
The poly(A)-binding protein (PABP), a protein that contains four conserved RNA recognition motifs (RRM1-4) and a C-terminal domain, is expressed throughout the eukaryotic kingdom and promotes translation through physical and functional interactions with eukaryotic initiation factor (eIF) 4G and eIF4B. Two highly divergent isoforms of eIF4G, known as eIF4G and eIFiso4G, are expressed in plants. As little is known about how PABP can interact with RNA and three distinct translation initiation factors in plants, the RNA binding specificity and organization of the protein interaction domains in wheat PABP was investigated. Wheat PABP differs from animal PABP in that its RRM1 does not bind RNA as an individual domain and that RRM 2, 3, and 4 exhibit different RNA binding specificities to non-poly(A) sequences. The PABP interaction domains for eIF4G and eIFiso4G were distinct despite the functional similarity between the eIF4G proteins. A single interaction domain for eIF4G is present in the RRM1 of PABP, whereas eIFiso4G interacts at two sites, i.e. one within RRM1-2 and the second within RRM3-4. The eIFiso4G binding site in RRM1-2 mapped to a 36-amino acid region encompassing the C-terminal end of RRM1, the linker region, and the N-terminal end of RRM2, whereas the second site in RRM3-4 was more complex. A single interaction domain for eIF4B is present within a 32-amino acid region representing the C-terminal end of RRM1 of PABP that overlaps with the N-proximal eIFiso4G interaction domain. eIF4B and eIFiso4G exhibited competitive binding to PABP, supporting the overlapping nature of their interaction domains. These results support the notion that eIF4G, eIFiso4G, and eIF4B interact with distinct molecules of PABP to increase the stability of the interaction between the termini of an mRNA.  相似文献   

11.
12.
13.
Positive-strand RNA [(+)RNA] viruses invariably replicate their RNA genomes on modified intracellular membranes. In infected Drosophila cells, Flock House nodavirus (FHV) RNA replication complexes form on outer mitochondrial membranes inside ~50-nm, virus-induced spherular invaginations similar to RNA replication-linked spherules induced by many (+)RNA viruses at various membranes. To better understand replication complex assembly, we studied the mechanisms of FHV spherule formation. FHV has two genomic RNAs; RNA1 encodes multifunctional RNA replication protein A and RNA interference suppressor protein B2, while RNA2 encodes the capsid proteins. Expressing genomic RNA1 without RNA2 induced mitochondrial spherules indistinguishable from those in FHV infection. RNA1 mutation showed that protein B2 was dispensable and that protein A was the only FHV protein required for spherule formation. However, expressing protein A alone only "zippered" together the surfaces of adjacent mitochondria, without inducing spherules. Thus, protein A is necessary but not sufficient for spherule formation. Coexpressing protein A plus a replication-competent FHV RNA template induced RNA replication in trans and membrane spherules. Moreover, spherules were not formed when replicatable FHV RNA templates were expressed with protein A bearing a single, polymerase-inactivating amino acid change or when wild-type protein A was expressed with a nonreplicatable FHV RNA template. Thus, unlike many (+)RNA viruses, the membrane-bounded compartments in which FHV RNA replication occurs are not induced solely by viral protein(s) but require viral RNA synthesis. In addition to replication complex assembly, the results have implications for nodavirus interaction with cell RNA silencing pathways and other aspects of virus control.  相似文献   

14.
The possible genomic homologies between three serotypes of human rhinoviruses (HRV 1A, HRV 2, and HRV 14) were investigated. First we confirmed that these viruses were unrelated by the criterion of the absence of common antigenic determinants on the surfaces of the native virions, as detected by cross-neutralization of complementfixation. RNA-RNA hybridization was then examined with purified, highly radioactive, double-stranded, replicative-form RNA and excess single-stranded virion RNA. Single-stranded RNA showed 100% homology with the minus strand from the replicative-form RNA of the same type of virus. HRV 1A, HRV 2, and HRV 14 showed low intertypic homologies; these were not significantly greater than those found between the rhinoviruses and polivirus, which were used as a negative control. The immunological relationship and the RNA homology between HRV 1A and HRV 1B were also examined by the above techniques. It was confirmed that HRV 1A and HRV 1B share some surface determinants and it was also found that HRV 1B RNA shares 70% homology with HRV 1A RNA.  相似文献   

15.
16.
The majority of the protein mass of HeLa 40S heterogeneous nuclear ribonucleoprotein monoparticles is composed of multiple copies of six proteins that resolve in SDS gels as three groups of doublet bands (A1, A2; B1, B2; and C1, C2) (Beyer, A. L., M. E. Christensen, B. W. Walker, and W. M. LeStourgeon. 1977. Cell. 11: 127-138). We report here that when 40S monoparticles are exposed briefly to ribonuclease, proteins A1, C1, and C2 are solubilized coincidentally with the loss of most premessenger RNA sequences. The remaining proteins exist as tetramers of (A2)3(B1) or pentamers of (A2)3(B1)(B2). The tetramers may reassociate in highly specific ways to form either of two different structures. In 0.1 M salt approximately 12 tetramers (derived from three or four monoparticles) reassemble to form highly regular structures, which may possess dodecahedral symmetry. These structures sediment at 43S, are 20-22 nm in width, and have a mass near 2.3 million. These structures possess 450-500 bases of slowly labeled RNA, which migrates in gels as fragments 200-220 bases in length. In 9 mM salt the tetramers reassociate to form 2.0 M salt-insoluble helical filaments of indeterminant length with a pitch near 60 nm and diameter near 18 nm. If 40S monoparticles are treated briefly with nuclease-free proteases, the same proteins solubilized by nuclease (A1, C1, and C2) are preferentially cleaved. This protein cleavage is associated with the dissociation of most of the heterogeneous nuclear RNA. Proteins A2 and B1 again reassemble to form uniform, globular particles, but these sediment slightly slower than intact monoparticles. These findings indicate that proteins A1, C1, and C2 and most of the premessenger sequences occupy a peripheral position in intact monoparticles and that their homotypic and heterotypic associations are dependent on protein-RNA interactions. Protein cross-linking studies demonstrate that trimers of A1, A2, and C1 exist as the most easily stabilized homotypic association in 40S particles. This supports the 3:1 ratio (via densitometry) of the A and C proteins to the B proteins and indicates that 40S monoparticles are composed of three or four repeating units, each containing 3(A1),3(A2),1(B1),1(B2),3(C1), and 1(C2).  相似文献   

17.
18.
EBER 1, a small noncoding viral RNA abundantly expressed in all cells transformed by Epstein-Barr virus (EBV), has been shown to associate with the human ribosomal protein L22. Here we present in vitro binding studies using purified RNAs and recombinant proteins. Electrophoretic mobility-shift assays (EMSAs) show that recombinant L22 (rL22) and maltose-binding protein (MBP)-tagged L22 protein bind EBER 1 in vitro, both forming three specific protein-dependent mobility shifts. Use of a mixture of rL22 and MBP-L22 indicates that these three shifts contain one, two, or three L22 proteins per EBER 1 molecule. EMSAs performed with EBER 1 deletion constructs and EBER 1 stem-loops inserted into a nonbinding RNA, HSUR 3, identify stem-loops I, III, and IV as L22 binding sites. The existence of multiple L22 binding sites on EBER 1 inside cells is demonstrated by in vivo UV cross-linking. Our results are discussed with respect to the function of EBER 1 in EBV-infected human B cells.  相似文献   

19.
20.
Black beetle virus is an insect virus with a split genome consisting of two single-stranded, messenger-active RNA molecules with molecular weights of 1.0 x 10(6) (RNA 1) and 0.5 x 10(6) (RNA 2), respectively. Virions contained two proteins, beta with a molecular weight of 43,000 (43K) and gamma (5K), and traces of a third protein, alpha (47K). When translated in cell-free extracts of rabbit reticulocytes, RNA 1 directed the synthesis of protein A (104K), whereas RNA 2 synthesized protein alpha. The in vitro translation efficiency of the two RNAs was roughly equal. Infection of cultured Drosophila cells induced the synthesis of five new proteins: A, alpha, beta, gamma, and B (10K), detected by autoradiography of polyacrylamide gels after electrophoresis of extracts from [(35)S]methionine-labeled cultures. All but protein gamma could also be detected by staining with Coomassie brilliant blue, indicating vigorous synthesis of viral proteins. Pulse-chase experiments in infected cells revealed the disappearance of protein alpha and the coordinate appearance of proteins beta and gamma, supporting an earlier proposal that coat protein of mature virions is made by cleavage of precursor alpha. Proteins A and B were stable in such pulse-chase experiments. The three classes of virus-induced proteins, represented by A, B, and alpha, were synthesized in markedly different amounts and with different kinetics. Synthesis of proteins A and B peaked early in infection and then declined, whereas synthesis of coat protein precursor alpha peaked much later. These results suggest that RNA 1 controls early replication functions via protein A (and also possibly protein B), whereas RNA 2 controls synthesis of coat protein required later for virion assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号