首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosynthesis of sphinganine-analog mycotoxins   总被引:1,自引:0,他引:1  
Sphinganine-analog mycotoxins (SAMT) are polyketide-derived natural products produced by a number of plant pathogenic fungi and are among the most economically important mycotoxins. The toxins are structurally similar to sphinganine, a key intermediate in the biosynthesis of ceramides and sphingolipids, and competitive inhibitors for ceramide synthase. The inhibition of ceramide and sphingolipid biosynthesis is associated with several fatal diseases in domestic animals and esophageal cancer and neural tube defects in humans. SAMT contains a highly reduced, acyclic polyketide carbon backbone, which is assembled by a single module polyketide synthase. The biosynthesis of SAMT involves a unique polyketide chain-releasing mechanism, in which a pyridoxal 5'-phosphate-dependent enzyme catalyzes the termination, offloading and elongation of the polyketide chain. This leads to the introduction of a new carbon-carbon bond and an amino group to the polyketide chain. The mechanism is fundamentally different from the thioesterase/cyclase-catalyzed polyketide chain releasing found in bacterial and other fungal polyketide biosynthesis. Genetic data suggest that the ketosynthase domain of the polyketide synthase and the chain-releasing enzyme are important for controlling the final product structure. In addition, several post-polyketide modifications have to take place before SAMT become mature toxins.  相似文献   

2.
Recent literature on polyketide biosynthesis suggests that polyketide synthases have much greater diversity in both mechanism and structure than the current type I, II and III paradigms. These examples serve as an inspiration for searching novel polyketide synthases to give new insights into polyketide biosynthesis and to provide new opportunities for combinatorial biosynthesis.  相似文献   

3.
4.
Modular polyketide synthases (PKSs) are large multi-enzymatic, multi-domain megasynthases, which are involved in the biosynthesis of a class of pharmaceutically important natural products, namely polyketides. These enzymes harbor a set of repetitive active sites termed modules and the domains present in each module dictate the chemical moiety that would add to a growing polyketide chain. This modular logic of biosynthesis has been exploited with reasonable success to produce several novel compounds by genetic manipulation. However, for harnessing their vast potential of combinatorial biosynthesis, it is essential to develop knowledge based in silico approaches for correlating the sequence and domain organization of PKSs to their polyketide products. In this work, we have carried out extensive sequence analysis of experimentally characterized PKS clusters to develop an automated computational protocol for unambiguous identification of various PKS domains in a polypeptide sequence. A structure based approach has been used to identify the putative active site residues of acyltransferase (AT) domains, which control the specificities for various starter and extender units during polyketide biosynthesis. On the basis of the analysis of the active site residues and molecular modelling of substrates in the active site of representative AT domains, we have identified a crucial residue that is likely to play a major role in discriminating between malonate and methylmalonate during selection of extender groups by this domain. Structural modelling has also explained the experimentally observed chiral preference of AT domain in substrate selection. This computational protocol has been used to predict the domain organization and substrate specificity for PKS clusters from various microbial genomes. The results of our analysis as well as the computational tools for prediction of domain organization and substrate specificity have been organized in the form of a searchable computerized database (PKSDB). PKSDB would serve as a valuable tool for identification of polyketide products biosynthesized by uncharacterized PKS clusters. This database can also provide guidelines for rational design of experiments to engineer novel polyketides.  相似文献   

5.
多聚酮的微生物合成及其多样性研究进展   总被引:2,自引:0,他引:2  
多聚酮多是由微生物产生的一大类天然产物,在结构和功能上具有多样性。很多聚酮具有抗细菌、抗真菌、抗寄生虫、抗肿瘤等生物活性,有很大的临床应用价值。随着研究的不断深入,一方面更多的天然产物聚酮被发现。另一方面对它们合成相关酶的作用机制研究也更加深入。主要对多聚酮的合成机制以及多聚酮合成类型的多样性展开论述。  相似文献   

6.
Spinosyns A and D are the active ingredients in an insect control agent produced by fermentation of Saccharopolyspora spinosa. Spinosyns are macrolides with a 21-carbon, tetracyclic lactone backbone to which the deoxysugars forosamine and tri-O-methylrhamnose are attached. The spinosyn biosynthesis genes, except for the rhamnose genes, are located in a cluster that spans 74 kb of the S. spinosa genome. DNA sequence analysis, targeted gene disruptions and bioconversion studies identified five large genes encoding type I polyketide synthase subunits, and 14 genes involved in sugar biosynthesis, sugar attachment to the polyketide or cross-bridging of the polyketide. Four rhamnose biosynthetic genes, two of which are also necessary for forosamine biosynthesis, are located outside the spinosyn gene cluster. Duplication of the spinosyn genes linked to the polyketide synthase genes stimulated the final step in the biosynthesis — the conversion of the forosamine-less pseudoaglycones to endproducts. Duplication of genes involved in the early steps of deoxysugar biosynthesis increased spinosyn yield significantly. Journal of Industrial Microbiology & Biotechnology (2001) 27, 399–402. Received 31 May 2001/ Accepted in revised form 09 July 2001  相似文献   

7.
Polyketides are one of the largest groups of natural products produced by bacteria, fungi, and plants. Many of these metabolites have highly complex chemical structures and very important biological activities, including antibiotic, anticancer, immunosuppressant, and anti-cholesterol activities. In the past two decades, extensive investigations have been carried out to understand the molecular mechanisms for polyketide biosynthesis. These efforts have led to the development of various rational approaches toward engineered biosynthesis of new polyketides. More recently, the research efforts have shifted to the elucidation of the three-dimentional structure of the complex enzyme machineries for polyketide biosynthesis and to the exploitation of new sources for polyketide production, such as filamentous fungi and marine microorganisms. This review summarizes our general understanding of the biosynthetic mechanisms and the progress in engineered biosynthesis of polyketides.  相似文献   

8.
Polyketides are known to be used by insects for pheromone communication and defence against enemies. Although in microorganisms (fungi, bacteria) and plants polyketide biogenesis is known to be catalysed by polyketide synthases (PKS), no insect PKS involved in biosynthesis of pheromones or defensive compounds have yet been found. Polyketides detected in insects may also be biosynthesized by endosymbionts. From a chemical perspective, polyketide biogenesis involves the formation of a polyketide chain using carboxylic acids as precursors. Fatty acid biosynthesis also requires carboxylic acids as precursors, but utilizes fatty acid synthases (FAS) to catalyse this process. In the present review, studies of the biosynthesis of insect polyketides applying labelled carboxylic acids as precursors are outlined to exemplify chemical approaches used to elucidate insect polyketide formation. However, since compounds biosynthesised by FAS may use the same precursors, it still remains unclear whether the structures that are formed from e.g. acetate chains (acetogenins) or propanoate chains (propanogenins) are PKS or FAS products. A critical comparison of PKS and FAS architectures and activities supports the hypothesis of a common evolutionary origin of these enzyme complexes and highlights why PKS can catalyse the biosynthesis of much more complex products than can FAS. Finally, we summarise knowledge which might assist researchers in designing approaches for the detection of insect PKS genes.  相似文献   

9.
Streptomyces curacoi produces curamycin, an antibiotic based on a modified orsellinic acid skeleton that is synthesized by the polyketide pathway. We have cloned, characterized, and partly sequenced a polyketide synthase gene cluster of S. curacoi. The sequence data reveal an organization of open reading frames that is similar to those of other polyketide synthetic clusters, although the biosynthetic products differ considerably in size and structure. We propose that one of the predicted open reading frames (curA) encodes polykeptide synthase, on the basis of its homology with other enzymes with similar functions. Expression of the cloned chromosomal fragment in the heterologous host S. lividans leads to the production of a brown pigment in large quantities. The analysis and expression of the cur genes for detailed molecular studies of the mechanism of polyketide biosynthesis is discussed.  相似文献   

10.
Versatility of polyketide synthases in generating metabolic diversity   总被引:1,自引:0,他引:1  
Polyketide synthases (PKSs) form a large family of multifunctional proteins involved in the biosynthesis of diverse classes of natural products. Architecturally at least three different types of PKSs have been discovered in the microbial world and recent years have revealed tremendous versatility of PKSs, both in terms of their structural and functional organization and in their ability to produce compounds other than typical secondary metabolites. Mycobacterium tuberculosis exploits polyketide biosynthetic enzymes to synthesize complex lipids, many of which are essential for its survival. The functional significance of the large repertoire of PKSs in Dictyostelium discoideum, perhaps in producing developmental regulating factors, is emerging. Recently determined structures of fatty acid synthases (FASs) and PKSs now provide an opportunity to delineate the mechanistic and structural basis of polyketide biosynthetic machinery.  相似文献   

11.
12.
聚酮是一大类具有重要生物活性的天然产物,其生物合成途径复杂多样。利用异源宿主合成聚酮化合物要比使用天然生产菌有很多优点。异源宿主的选择是异源生物合成聚酮的关键。这种宿主必须能够大量表达大分子聚酮合成酶(300 kDa或更大)且能够大规模的转译后修饰这些蛋白;还要能够形成大量的像丙二酰CoA、甲基丙二酰CoA等细胞内起始单元。随着各种技术的不断进步,异源宿主很可能成为大规模生产聚酮化合物的一个强有力平台。本文对聚酮合成酶,异源生产聚酮的优点、条件和应用都有所阐述。  相似文献   

13.
This paper gives an overview of existing knowledge concerning the structure and deduced functions of polyketide synthases active in antibiotic-producing streptomycetes. Using monensin A as an example of a structurally complex polyketide metabolite, the problem of understanding how individual strains of microorganism are 'programmed' to produce a given polyketide metabolite is first outlined. The question then arises, how is the programming of polyketide assembly related to the structural organization of individual polyketide synthase complexes at the biochemical and genetic levels? Experimental results that help to illuminate these relations are described, in particular, those giving information about the structures and deduced functions of polyketide synthases involved in aromatic polyketide biosynthesis (actinorhodin, granaticin, tetracenomycin, whiE spore pigment and an act homologous region from the monensin-producing organism), as well as the macrolide polyketide synthase active in the biosynthesis of 6-deoxyerythronolide A.  相似文献   

14.
Zearalenone, a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain and has chronic estrogenic effects on mammals. Zearalenone is a polyketide derived from the sequential condensation of multiple acetate units by a polyketide synthase (PKS), but the genetics of its biosynthesis are not understood. We cloned two genes, designated ZEA1 and ZEA2, which encode polyketide synthases that participate in the biosynthesis of zearalenone by Gibberella zeae (anamorph Fusarium graminearum). Disruption of either gene resulted in the loss of zearalenone production under inducing conditions. ZEA1 and ZEA2 are transcribed divergently from a common promoter region. Quantitative PCR analysis of both PKS genes and six flanking genes supports the view that the two polyketide synthases make up the core biosynthetic unit for zearalenone biosynthesis. An appreciation of the genetics of zearalenone biosynthesis is needed to understand how zearalenone is synthesized under field conditions that result in the contamination of grain.  相似文献   

15.
Bacterial siderophores assist pathogens in iron acquisition inside their hosts. They are often essential for achieving a successful infection, and their biosynthesis represents an attractive antibiotic target. Recently, several siderophore biosynthetic loci have been identified, and in vitro studies have advanced our knowledge of the biosynthesis of aryl-capped peptide and peptide–polyketide siderophores from Mycobacterium spp., Pseudomonas spp., Yersinia spp. and other bacteria. These studies also provided insights into the assembly of related siderophores and many secondary metabolites of medical relevance. Assembly of aryl-capped peptide and peptide–polyketide siderophores involves non-ribosomal peptide synthetase, polyketide synthase and non-ribosomal-peptide polyketide hybrid subunits. Analysis of these subunits suggests that their domains and modules are functionally and structurally independent. It appears that nature has selected a set of functional domains and modules that can be rearranged in different order and combinations to biosynthesize different products. Although much remains to be learned about modular synthetases and synthases, it is already possible to conceive strategies to engineer these enzymes to generate novel products.  相似文献   

16.
The full potential of polyketide discovery has yet to be reached owing to a lack of suitable technologies and knowledge required to advance engineering of polyketide biosynthesis. Recent investigations on the discovery, enhancement, and non-natural use of these biosynthetic gene clusters via computational biology, metabolic engineering, structural biology, and enzymology-guided approaches have facilitated improved access to designer polyketides. Here, we discuss recent successes in gene cluster discovery, host strain engineering, precursor-directed biosynthesis, combinatorial biosynthesis, polyketide tailoring, and high-throughput synthetic biology, as well as challenges and outlooks for rapidly generating useful target polyketides.  相似文献   

17.
Unusual polyketide synthases (PKSs), that are structurally type I but act in an iterative manner for aromatic polyketide biosynthesis, are a new family found in bacteria. Here we report the cloning of the iterative type I PKS gene chlB1 from the chlorothricin (CHL) producer Streptomyces antibioticus DSM 40725 by a rapid PCR approach, and characterization of the function of the gene product as a 6-methylsalicyclic acid synthase (6-MSAS). Sequence analysis of various iterative type I PKSs suggests that the resulting aromatic or aliphatic structure of the products might be intrinsically determined by a catalytic feature of the paired KR-DH domains in the control of the double bond geometry. The finding of ChlB1 as a 6-MSAS not only enriches the current knowledge of aromatic polyketide biosynthesis in bacteria, but will also contribute to the generation of novel polyketide analogs via combinatorial biosynthesis with engineered PKSs.  相似文献   

18.
The 54-kbp Type I polyketide synthase gene cluster, most probably involved in rifamycin biosynthesis by Amycolatopsis mediterranei, was cloned in E. coli and completely sequenced. The DNA encodes five closely packed, very large open reading frames reading in one direction. As expected from the chemical structure of rifamycins, ten polyketide synthase modules and a CoA ligase domain were identified in the five open reading frames which contain one to three polyketide synthase modules each. The order of the functional domains on the DNA probably reflects the order in which they are used because each of the modules contains the predicted acetate or propionate transferase, dehydratase, and β-ketoacyl-ACP reductase functions, required for the respective step in rifamycin biosynthesis.  相似文献   

19.
A gene, schC, adjacent to the sch gene cluster encoding the biosynthesis of a polyketide spore pigment in Streptomyces halstedii was sequenced. Its deduced product resembled flavin adenine nucleotide-containing hydroxylases involved in the biosynthesis of polycyclic aromatic polyketide antibiotics and in catabolic pathways of aromatic compounds. When schC was disrupted, the normally green spores of S. halstedii became lilac. An schC-like gene was located in an equivalent position next to a large gene cluster (whiE) known to determine spore pigment in Streptomyces coelicolor A3(2).  相似文献   

20.
In recent years, remarkable versatility of polyketide synthases (PKSs) has been recognized; both in terms of their structural and functional organization as well as their ability to produce compounds other than typical secondary metabolites. Multifunctional Type I PKSs catalyze the biosynthesis of polyketide products by either using the same active sites repetitively (iterative) or by using these catalytic domains only once (modular) during the entire biosynthetic process. The largest open reading frame in Mycobacterium tuberculosis, pks12, was recently proposed to be involved in the biosynthesis of mannosyl-beta-1-phosphomycoketide (MPM). The PKS12 protein contains two complete sets of modules and has been suggested to synthesize mycoketide by five alternating condensations of methylmalonyl and malonyl units by using an iterative mode of catalysis. The bimodular iterative catalysis would require transfer of intermediate chains from acyl carrier protein domain of module 2 to ketosynthase domain of module 1. Such bimodular iterations during PKS biosynthesis have not been characterized and appear unlikely based on recent understanding of the three-dimensional organization of these proteins. Moreover, all known examples of iterative PKSs so far characterized involve unimodular iterations. Based on cell-free reconstitution of PKS12 enzymatic machinery, in this study, we provide the first evidence for a novel "modularly iterative" mechanism of biosynthesis. By combination of biochemical, computational, mutagenic, analytical ultracentrifugation and atomic force microscopy studies, we propose that PKS12 protein is organized as a large supramolecular assembly mediated through specific interactions between the C- and N-terminus linkers. PKS12 protein thus forms a modular assembly to perform repetitive condensations analogous to iterative proteins. This novel intermolecular iterative biosynthetic mechanism provides new perspective to our understanding of polyketide biosynthetic machinery and also suggests new ways to engineer polyketide metabolites. The characterization of novel molecular mechanisms involved in biosynthesis of mycobacterial virulent lipids has opened new avenues for drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号