首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth response of bean ( Phaseolus vulgaris L. 'Pinto') plants treated with 5 μg of brassinosteroid (BR) in the bean second-internode assay was measured in a controlled environment under 3 radiation sources: cool white fluorescent (CWF), far-red (FR) fluorescent and incandescent (INC) lamps. Growth comparisons were made under equal levels (90 μmol s-1 m-2) of photosynthetic photon flux density provided by CWF or INC lamps and equal levels of far-red (28 W m-2, 700–800 nm) radiation provided by the same INC or FR lamps. Treatment of the second internode with BR produced a sequential increase in elongation, curvature, and swelling under normal bioassay conditions (CWF lamps), as observed previously with brassins. In addition, BR induced marked splitting of the treated internode provided that ample photosynthate was available. Spectral quality had a differential effect on internodal elongation. Under CWF lamps, internodes, 6 days after BR-treatment, were 2–3 times longer than those of controls; under INC or FR lamps they were 30–60% shorter than those of controls. In all cases, BR-treatment greatly stimulated accumulation of photosynthate in the treated internode, as indicated by fresh and dry weights and stem diameter measurements. This suggests a possible mobilization role for BR in the intact plant. Brassinosteroid also partially overcame the natural inhibitory effects of CWF radiation on stem elongation.  相似文献   

2.
The response of pinto bean ( Phaseolus vulgaris L.) plants to single application of brassins (10 μg) in the second-internode assay was determined under equal levels (90 μE m−2 s−1) of photosynthetically active radiation in a controlled environment provided by cool-white fluorescent (CWF) lamps, incandescent (INC) lamps, or a combination of the two sources. Treatment of the second internode with brassins produced a characteristic swelling of the treated internode irrespective of the spectral source used. However, the increase in radial growth of the upper portion of brassin-treated internodes from plants grown under INC lamps was more than 50% greater than those of plants grown under CWF lamps for 7 days. Spectral quality also had a marked effect on the rate and extent of internode elongation. Brassin-treated internodes of plants grown for 7 days under CWF lamps were more than twice as long as those of control plants, whereas those from INC or CWF + INC grown plants were significantly shorter than those of control plants. The effect of brassins was largely confined to the treated internode.  相似文献   

3.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

4.
Stockplants of the tropical hardwoods Terminalia spinosa Engl, and Triplochiton scleroxylon K. Schum were grown in a controlled environment under red:far-red (R:FR) ratios ranging from 0.5-3.1. In both species, rates of shoot height increment were higher (P < 0.05) under the low R:FR ratios as a result of increased internode elongation. In Terminalia spinosa , specific leaf area (SLA) was also significantly higher under lower R:FR ratios, values ranging from 175 to 210 cm2 g-1 in the 3.1 and 0.9 treatments respectively. No effect of R:FR ratio on SLA was recorded in Triplochiton scleroxylon. Pre-severance photo-synthetic rate, stomatal conductance and water-use efficiency were increased under the higher R:FR ratios in Terminalia spinosa , rates of photosynthesis ranging between 2.68-4.59 μmol m-2 s-1 in the 0.5 and 3.1 R:FR treatments respectively. Gas exchange rates of Triplochiton scleroxylon were unaffected by R:FR treatment. These contrasting responses to variation in R:FR ratio were associated with differences in rooting ability. In Terminalia spinosa , significantly higher percentage rooting was recorded in the cuttings from the 3.1 R:FR treatment than from 0.5, with values of 93.7% and 77.5% recorded respectively. R:FR ratio also affected rooting percentages of Triplochiton scleroxylon , but in this case, higher rooting percentages were recorded in the lower R:FR ratios, values ranging from 31.1–54.1% in the 3.0 and 0.5 R.FR treatments respectively. This difference in rooting response is attributed to the contrasting effects of R:FR ratio on the leaf and stem morphology of the two species. The implications of these results for stockplant management are discussed.  相似文献   

5.
Manabe, K. 1987. Low temperature spectrophotometry of the phototransformation of Pfr to Pr, in pelletable pea phytochrome.
Low temperature spectrophotometry was used to study the phototransformation of Pfr to Pr in 1000–7000 g pelletable fractions extracted from dark grown pea ( Pisum sativum L. cv. Alaska) epicotyls which had been irradiated with red and then far-red light. At -170°C, far-red irradiation of the pelletable phytochrome which had been pre-irradiated with saturating fluence of red light before freezing caused formation of an intermediate (named I660), the difference spectrum of which showed a marked ab-sorbance decrease at 740 nm and a concomitant small increase at about 660 nm. The inermediate I660 was converted to another intermediate (I660) when it was warmed above -80°C. The difference spectrum of this intermediate showed a positive peak at 670 nm. This intermediate was photoconverted to Pfr by red irradiation and also underwent dark reversion to Pfr at -60°C. I660 formed Pr if the temperature was above -10°C. The basic features of the phytochrome intermediates resemble those obtained in vivo and in degraded purified phytochrome.  相似文献   

6.
Senescence of lower leaves (LS) begins before anthesis in sunflower crop canopies. Using isolated field-grown sunflower plants, it has previously been shown that pre-anthesis LS is dependent on photosynthetic photon flux density (PPFD) and is hastened by increases in far-red light. We tested the hypothesis that increasing the red/far-red ratio (R/FR) perceived by basal leaves within canopies delays LS. To do this, light impinging on the lower surface of north-oriented 8th leaves (cotyledons=0) of crops with maximum leaf area indexes of 3.3 (Experiment 1) and 2.4 (Experiment 2) was enriched (+8.33 μmol m−2 s−1) with red light using light emitting diode (LED) panels. LED panels constructed with unlit LED or with green LED (PPFD slightly greater than the red LED panels, to compensate for lower efficiency) were used as controls. Compared with controls, additional R significantly ( P <0.05) increased R/FR perceived by the lower surface and significantly ( P <0.01) delayed LS. On average, leaf duration, as time between full expansion and a 70% diminution of chlorophyll content, was 5 days greater for leaves receiving extra red light (maximum observed LD=27 days). We conclude that an increase in the R/FR ratio can delay LS in crop canopies.  相似文献   

7.
Effects of canopy shade on the lipid composition of soybean leaves   总被引:1,自引:0,他引:1  
The effect of canopy shade on leaf lipid composition was examined in soybeans ( Glycine max cv. Young) grown under field conditions. Expanding leaves were tagged at 50, 58 and 65 days after planting (DAP) in plots with either a high (10 plants m−1 row) or low (1 plant m−1 row) plant density. At 92 DAP, light conditions ranged from a pho-tosynthetic photon flux density (PPFD) of 87% of full sun with a far-red/red (735 nm/645 nm) ratio of 0.9 at upper canopy leaves to extreme shade where the PPFD was 10% of full sun with a far-red/red ratio greater than 6. Highly shaded leaves in the high plant density treatment accumulated triacylglycerol (TG) up to 25% of total leaf lipid, a 2.4-fold increase in TG on a chlorophyll basis compared to leaves in the upper canopy. Although total polar lipid content was reduced up to 50% in shaded leaves, shade had little affect on the lipid content or composition of thylakoid membranes. Shade did not affect leaf chlorophyll content. Therefore, the changes in leaf lipid composition were not related to senescence. These findings suggest that conditions of low irradiance and/or a high FR/R ratio cause a shift in carbon metabolism toward the accumulation of TG, a storage lipid. Eighteen-carbon fatty acid desaturation was also affected in highly shaded leaves where a reduction in linolenic acid (18:3) content was accompanied by a proportional increase in oleic (18:1) and linoleic (18:2) acids.  相似文献   

8.
Abstract. Peas were grown in controlled environments (12h white fluorescent light. ∼47 μmol photons m-2 s 1/12 dark, 25 °C), using (1) 15-min far-red illumination at the end of each photoperiod (brief FR) to simulate the increase in the far-red/red ratio near the end of the day, and (2) high levels of supplementary far-red light (red:far-red ratio=0.04) during the entire photoperiod (long-term FR) to simulate extreme shade conditions under a plant canopy. Brief FR illumination led to marked morphological effects attributable to phytochrome regulation, namely, an increase in internodal length, but a decrease in leaflet area, chloroplast size and chlorophyll content per chloroplast compared with the control. Significantly, brief FR illumination had little or no effect on the amounts of the major chloroplast components (ribulose 1.5-biphosphate carboxylase, adenosine triphosphate synthase, cytochrome b/f complex and Photosystem II) relative to chlorophyll or Photosystem I, and the leaf photosynthetic capacities per unit chlorophyll were similar. In contrast, supplementing high levels of far-red light during the entire photoperiod not only led to the phytochrome effects above, but there was also a marked increase in leaf photosynthetic capacity per unit chlorophyll. due to increased amounts of the major chloroplast components relative to chlorophyll or Photosystem I. We hypothesize that supplementary far-red light, absorbed by Photosystem I, induced an increase in the major chloroplast components by a photosynthetic feedback mechanism. In fully greened leaves, we propose that the two photosystems themselves, rather than phytochrome, may be the predominent sensors of light quantity in triggering modulations of the stoichiometries of chloroplast components, which in turn lead to varying photosynthetic capacities.  相似文献   

9.
This study evaluated the photosynthetic responses of Cucumis sativus leaves acclimated to illumination from three-band white fluorescent lamps with a high red:far-red (R:FR) ratio (R:FR = 10.5) and the photosynthetic responses of leaves acclimated to metal-halide lamps that provided a spectrum similar to that of natural light (R:FR = 1.2) at acclimation photosynthetic photon flux density (PPFD) of 100 to 700 μmol m?2 s?1. The maximum gross photosynthetic rate (P G) of the fluorescent-acclimated leaves was approximately 1.4 times that of the metal-halide-acclimated leaves at all acclimation PPFDs. The ratio of quantum efficiency of photosystem II (ΦPSII) of the fluorescent-acclimated leaves to that of the metal-halide-acclimated leaves tended to increase with increasing acclimation PPFD, whereas the corresponding ratios for the leaf mass per unit area tended to decrease with increasing acclimation PPFD. These results suggest that the greater maximum P G of the fluorescent-acclimated leaves resulted from an interaction between the acclimation light quality and quantity, which was mainly caused by the greater leaf biomass for photosynthesis per area at low acclimation PPFDs and by the higher ΦPSII as a result of changes in characteristics and distribution of chloroplasts, or a combination of these factors at high acclimation PPFDs.  相似文献   

10.
The action of light in the initiation of floral buds in vitro has been studied using monochromatic light qualities on root explants of a long day plant, Cichorium intybus L. cv. Witloof. Red light (660 nm, 0.30 W m-2) promotes flowering, while far-red (730 nm, 0.31 W m-2) and irradiation with combined red + far-red (0.20 + 0.41 W m-2) have no effect. In short day conditions floral response can be obtained in two ways: 1) by interrupting the dark period with 5 brief irradiations of red light (0.45 W m-2, 12 min) at regular intervals, although these are counteracted by far-red irradiations of equal intensity and duration; 2) by interrupting the long night with 5 h red light applied during the second third of the night, while at the beginning or at the end it is ineffective. Red light efficiency appears to depend on the photosynthetic activity of the tissues, so that flowering increases with increasing intensity of white light and is suppressed if no white light is supplied. The reproductive development is determined by the coordination of proper irradiation conditions with sufficient sensitivity of the perceiving meristematic cells. The period of highest sensitivity to environmental light conditions in the life cycle of a Cichorium root explant occurs between the 8th and the 16th day after the start of the culture. The data strongly suggest that phytochrome is involved in flower induction of Cichorium in vitro.  相似文献   

11.
Effects of light quality on somatic embryogenesis in Araujia sericifera   总被引:1,自引:0,他引:1  
The effects of photoperiod, light quality and end-of-day (EOD) phytochrome photoconversion on somatic embryogenesis (SE) of Araujia sericifera petals have been studied. Petals from immature flowers were cultured under 8- and 16-h photoperiods using Gro-lux fluorescent lamps. The photon fluence rate was 90–100 μmol m−2 s−1 and the red (R):far-red (FR) ratio was 98. R, FR, R followed by FR (R-FR) and FR followed by R (FR-R) light treatments were applied for 3 weeks at the end of the photoperiods. In a set of experiments, dl - α -difluoromethylarginine (DFMA) or methylglyoxal bis (guanylhydrazone) (MGBG), both inhibitors of polyamine biosynthesis, were added to the culture medium in order to study the involvement of polyamine metabolism. The level of SE was the same in long (LD) and short (SD) days. Thus, the light effect was accomplished after 8 h. All EOD treatments that decreased the Pfr level inhibited SE when applied after SD, but not after LD. The FR-R treatment after LD caused an additional stimulatory effect on SE, even in the presence of polyamine inhibitors. DFMA inhibited SE in both SD and LD, but MGBG did not modify SE in either SD or LD. The R, FR and R-FR treatments did not alter the level of SE when applied after LD in the presence of DFMA or MGBG. However, these treatments decreased SE after SD when the medium contained polyamine inhibitors. Our results suggest that Gro-lux lamps, which produce an extremely high R:FR ratio, promote SE in A. sericifera and a timing response to phytochrome photoconversion during photoperiodic induction. Thus, our data corroborate the involvement of phytochromes and polyamines in SE in A. sericifera, which responded as a light-dominant long-day plant.  相似文献   

12.
Euphaea decorata in Tai Po Kau Forest Stream (Hong Kong) was univoltine. Most recruitment took place in summer, and larval growth proceeded throughout the year. Life-cycles recorded in 1977–78 and 1978–79 were similar. Annual production estimates, using the removal-summation, instantaneous growth and size-frequency methods, were more similar for the 1978–79 generation (ranging from 158.7–174.7; mean 1671 mg dry wt m-2) than for the 1977–78 generation (93.9-173-6; mean 131.7 mg dry wt m-2). Mean biomass was similar for both generations (ranging from 33.5–33.9 mg dry wt m-2), and mean P/B ratios were 3.9 1977–78) and 5.0 (1978–79). These are the first estimates of annual production by an Oriental stream insect.
Larvae were most abundant at microsites in the middle of the stream. Multiple regression analysis indicated that substratum characteristics were a major determinant of microdistribution. Euphaea decorata apparently favoured poorly-sorted sediments with highly peaked grain size-frequency distributions, containing few fine particles.
The carnivorous larvae showed ontogenetic changes in diet. Small individuals consumed mainly chironomid (Diptera) larvae; the diet expanded to include (successively) larvae of Ephemeroptera and Trichoptera as E. decorata grew. Seasonal changes in diet were also apparent, although larval diets during spring and summer were similar. There was also considerable overlap between autumn and winter diets. Ontogenetic influences upon prey consumed were not sufficient to account for the observed seasonal differences.  相似文献   

13.
We have studied photoperiodic control and the effect of phytochrome photoconversion at the end-of-day (EOD) on polyamine (PA) accumulation in petal explants of Araujia sericifera . Petals from immature flowers were cultured under long (LD) and short (SD) days. Light was provided by Gro-lux fluorescent lamps (90–100 µmol m−2 s−1). Red (R), far red (FR), red followed by far-red (R-FR) and far-red followed by red (FR-R) light treatments were applied daily at the end of the photoperiod. The free and bound putrescine (Put), spermidine (Spd) and spermine (Spm) fractions in petal explants were determined 40 days after the beginning of the culture. We also aimed to clarify the involvement of PA changes by using two inhibitors of PA biosynthesis: D- l -α-difluoromethylarginine (DFMA) and methylglyoxal bis (guanylhydrazone) (MGBG). We found PA accumulation to be under photoperiodic control, and the inhibitory effect of DFMA on this accumulation suggests that arginine decarboxylase (ADC) is the major pathway for Put biosynthesis. Polyamine levels were higher under LD, mainly as a result of the accumulation of free and bound Put. FR-EOD treatment, which dramatically reduced the R : FR ratio after LD, increased the accumulation of PA, mainly as free Put and free and bound Spd. Sequential R-FR and FR-R-EOD treatments strongly increased bound Spd. The concentration of MGBG used increased total PA accumulation, mainly as Put. However, all EOD light treatments dramatically reduced Put accumulation in the presence of MGBG. This may be due to a dual role of FR light in PA accumulation: (1) FR per se stimulates PA production, probably via ADC, and (2) in the presence of MGBG, FR inhibits Put accumulation, probably via ethylene production.  相似文献   

14.
Abstract. Juvenile seedlings, micropropagated plantlets, and adult rooted cuttings of Pinus radiata, together with seedlings of Agathis australis and Dacrydium cupressinum, were grown under either high (670/μmol m?2 s?1) or low (200 μmol m?2 s?1) photosynthetic photon flux density (PPFD) and, at low PPFD, under three red:far-red (R/FR) conditions, approximately simulating canopy shadelight, daylight and one intermediate value. In all types of P. radiata, a shade-intolerant species, stem height and diameter, stem and needle dry weight, and apical dominance were markedly increased by a reduction in R:FR ratio while fascicle density was decreased. In contrast, these increases were considerably less for the shade-tolerant D. cupressinum and moderately tolerant A. australis. With the exception of the P. radiata seedlings, height growth was greatest in all species under high compared to low PPFD for daylight R:FR ratio conditions. Total shoot (or plant) dry weight was increased approximately two-fold in all species and types by the higher PPFD. Shoot extension rates were negatively correlated with calculated phytochrome photoequilibrium with P. radiata, the most shade-intolerant species, having the highest change in rate per unit change in photoequilibrium (i.e. very responsive), and D. cupressinum, the most shade tolerant species evaluated, having the smallest change (i.e. largely unresponsive). Within the spectral quality treatments at low PPFD, it is suggested that higher rates of dry matter accumulation under the low R:FR ratio were the result of reduced mutual shading of adjacent leaves as a consequence of photomorphogenically-controlled internode lengths rather than of enhanced photosynthesis per se. The significance of the results is discussed in relation to planting stock management in nurseries, the management of forest canopies for understorey seedling growth, and to the construction of representative growth simulation models. Consequences for controlled environment lighting are also considered.  相似文献   

15.
Proliferating cultures of Actinidia deliciosa A. Chev., C. F. Liang and A. R. Ferguson cv. Tomuri (♂) were grown under photosynthetic photon flux density (PPFD) rates ranging from 30 to 250 μmol m−2 s−1 in order to determine certain physiological parameters in vitro: CO2 evolution, photosynthesis at three CO2 atmospheric concentrations (330, 1450 and 4500 μl l−1), fresh and dry matter accumulation and proliferation rate.
A proportional response in dry weight, dry/fresh weight ratios and PPFD was found. The proliferation rate increased up to 120 μmol m−2 s−1 but decreased at higher rates. At the highest PPFD, the CO2 released from cultures and accumulated in the vessels reached 200 μl l−1 of; at the lowest rate the CO2 concentration reached 10500 μl l−1 after 28 days of culture. The photosynthetic rate at 1450 and 4500 μl l−1 of CO2 was nearly 4 times higher than at the lowest concentration tested.  相似文献   

16.
Extension growth of secondary needles is under photoperiodic control in Pinus sylvestris . To test for the effects of far-red light on maintaining this extension growth, seedlings of six populations originating from latitudes between 57° and 67°N were raised for 11 weeks in continuous incandescent (metal halogen) light at 300 µmol m−2 s−1 and 20°C and then transferred at the same temperature to a daily regime of 8 h incandescent light (230 µmol m−2 s−1) followed by a 16 h day extension with cool white fluorescent light (40 µmol m−2 s−1, R/FR ratio 7.5) or with incandescent lamps (20 µmol m−2 s−1, R/FR ratio 2.0). For the seedlings from the three populations north of 64°, needle extension growth over 42 days in the FR-poor day extension treatment was lower by up to 40% than in the FR-rich day extension treatment, whereas for the seedlings from the three southern populations the needle extension growth was similar in both day extension treatments. The requirement for FR in day extensions is characteristic of 'light-dominant' photoperiodic control mechanisms. It appears that P. sylvestris changes from dark-dominant night timekeeping to light-dominant day timekeeping with increasing latitude, as with the photoperiodic control of budset in Picea abies .  相似文献   

17.
The seasonal variations in numbers and biomass of the mobile epifauna of a shallow, sandy bay in Gullmar Fjord (Sweden) was investigated during 1976–1977 using the drop-net technique. Juvenile plaice, Pleuronectes platessa L., sand goby, Pomatoschistus minutus (Pallas), and brown shrimp Crangon crangon L. are the dominant epifaunal species. A net enclosing an area of 100 m2 was used, and the organisms captured were collected with a small trawl. Three stations with a water depth≤ 1 m were regularly sampled with a total number of 73 drops. Maximum abundance was for plaice in June (6 ind m-2), for the shrimp in July-August (61 ind m-2), and for sand goby in September (2 ind m-2). Standing stocks (dry wt) were 0.2, 1.5 and 0.2 g m-2 respectively. Production estimates were based on seasonal changes in size frequency and information on specific growth rates. The production rate was for plaice (0-group) 0.3 g m-2 yr-1, for the shrimp 1.5, and for sand goby 0.2 g m-2 yr-1. Reliable estimates of the absolute abundance can be derived from the mean catch per unit area only when the efficiency of the fishing gear is known. After 6 hauls with the trawl in the drop-net enclosure more than 85% of the shrimps were caught and after the fifteenth haul less than 1% were still left. The fishing efficiency of a push-net in relation to the drop-net was for the shrimp 50%, for plaice 35% and for sand goby 17%.  相似文献   

18.
Oxygen uptake by the peat of two Antarctic bryophyte communities (a moss turf and a moss carpet) is converted to organic matter loss and used to derive the rate of decomposition. The decay rates obtained in this way are evaluated in two mathematical models which simulate the accumulation of dead organic matter (DOM) in the communities from the litter production and decomposition rate. Litter production, the extent of DOM accumulations at present on the sites and mean decomposition rates (i.e. fraction of standing crop lost per year) were 409 g m-2 year-1, 33.5 kg m-2 and 0.017 g g-1 year-1 in the moss turf and 392 g m-2 year-1, 29.6 kg m-2 and 0.010 g g-1 year-1 in the moss carpet respectively (all weights expressed as dry weight). Aerobic decomposition rate declined with depth in both communities. From the model's predictions it is suggested that the observed decay rate was too high in the moss turf and too low in the carpet. Possible reasons for this are discussed and suggestions made for future work.  相似文献   

19.
The effects of light and temperature on cell size and cellular composition (chlorophyll, protein, carbohydrate) of two freshwater cryptophytes were studied with batch cultures. Neither of the species had a constant cell size but the size varied with growth conditions. At each temperature the smallest cells were recorded at the lowest experimental photon flux density. The smallest cells of Cryptomonas 979/67 had an average volume of 232 μm3 and the largest ones 1 020 μm3. In Cryptomonas 979/62 the smallest and largest cells measured 4 306 μm3 and 12 450 μm3. Both species increased their cellular chlorophyll content when PFB dropped below 110–120 μmol m-2 s-1. The highest and lowest chlorophyll contents of 979/67 were 7.45 fg μm-3 and 0.55 fg μm-2 respectively. For 979/62 the corresponding values were 10.23 fg μm-3 and 0.93 fg μm-3. In both species the protein content remained stable at PFDs higher than 110–120 μmol m-2 S-1. The highest content of protein measured in 979/67 was 638 fg μm-3 and the lowest 147 fg μm-3. For 979/62 these values were 1 036 fg μm-3 and 148 fg μm-3 respectively. The carbohydrate results were less clear and no pattern either in response to photon flux density or temperature was obvious. The lowest and highest contents recorded for 979/67 were 62 fg μm-3 and 409 fg μ-3 and for 979162, 36 fg μm-3 and 329 fg μm-3  相似文献   

20.
In rye leaves ( Secale cereale L. cv. Petkus "Kustro") bleached in the presence of the chlorosis-inducing herbicides aminotriazole, haloxidine, San 6706 or difunone in white light of 54.2 W m-2 (5000 lx), catalase activity was very low. In addition, the activities of glycolate oxidase and hydroxypyruvate reductase were strongly diminished in treatments with San 6706 and difunone. The lowering of the peroxisomal enzyme activities was observed in red, but not in blue light and did not occur after treatment with the non-bleaching pyridazinone derivative San 9785. The deficiencies of the peroxisomal enzymes did not appear to be involved in the initiation of the chlorosis. Instead they are probably produced as secondary consequences of the bleaching. Low peroxisomal enzyme activities were also obtained without herbicide treatment by growing the leaves in an atmosphere of 2% O2 and 3% CO2, but in this case were not accompanied by an increased sensitivity of the Chl to photooxidative bleaching. The peroxisomal enzymes reached as high activities as in untreated controls when the herbicide-treated leaves were grown at a low light intensity of 0.106 W m-2 (10 lx). After transfer of herbicide-treated leaves grown under 0.106 W m-2 to 306 W m-2 (30 000 lx), catalase was strongly inactivated, even at 0°C. In treatments with San 6706 and difunone the increase of the activities of glycolate oxidase and hydroxypyruvate reductase was either stopped, remaining unchanged, or the enzymes were slightly inactivated after exposure to 306 W m-2 (30 000 lx). The observations suggest that the inactivation of peroxisomal enzymes results from photooxidative events in the chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号