首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the prostaglandin system on renal hemodynamics were studied by treating rats with a single intraperitoneal dose of indomethacin, an inhibitor of prostaglandin synthesis. Medullary plasma flow was significantly reduced 30–45 minutes after indomethacin, but was elevated 3–6 hours after indomethacin. These changes in medullary plasma flow correlated well with circulating levels of prostaglandins A and E. Total renal blood flow decreased following indomethacin treatment, but returned to normal levels within an hour. These results indicate that the inhibition of prostaglandin synthesis following a single intraperitoneal dose of indomethacin is short-lived and is followed by a significant elevation in prostaglandin synthesis. It is likely that prostaglandin levels play an important role in the control of renal medullary plasma flow.  相似文献   

2.
The purpose of this study was to examine the role of prostaglandins in the redistribution of renal cortical blood flow that occurs following reductions in renal perfusion pressure. The distribution of blood flow to the renal cortex was examined using radio-labeled microspheres (15 ± 1 μm). It was found that in animals not treated with a prostaglandin synthesis inhibition a decrease in renal perfusion pressure to the limit of renal blood flow autoregulation was associated with a decrease in fractional flow to the outer cortex (Zone I) and an increase in fractional flow to the inner cortex (Zones III and IV). A further decrease in renal perfusion pressure below the limit of autoregulation produced a further decrease in the fractional flow to Zone I and a further increase in fractional flow to Zones III and IV. In contrast, in animals treated with the prostaglandin synthesis inhibitor meclofenamate (5 mg/kg, i.v. bolus) a reduction in renal perfusion pressure to the limit of renal blood flow autoregulation produced no change in fractional blood flow to any of the 4 cortical zones. A further decrease in renal perfusion pressure, however, did produce a fall in fractional blood flow to Zone I and an increase in fractional flow to Zones III and IV. In conclusion, the results of this study indicate that within, but not below, the limit of renal blood flow autoregulation prostaglandin synthesis is an important factor in the regulation of renal cortical blood flow distribution.  相似文献   

3.
Components of the adrenocortical system (adrenal and blood corticosteroid hormones and hepatic and renal 11β-hydroxysteroid dehydrogenase activity) and also activity of the most important enzyme of the renin-angiotensin system, tissue and blood angiotensin converting enzyme (ACE), have been investigated in dynamics of alloxan diabetes. The study has shown that the initial period of diabetes is characterized by activation of synthesis and secretion of adrenocortical hormones into blood. High blood glucose and glucocorticoid hormones increase activity of the renin-angiotensin system in lungs and decrease ACE secretion into blood. This is accompanied by a decrease of activity of the renin-angiotensin system in kidneys. Subsequent progression of diabetes resulted in impairments of physiologically determined correlations between the components of these systems. Development of experimental diabetes for 30 days was accompanied by sign of a decrease of the adrenal glucocorticoid function regardless of stable impairments of carbohydrate metabolism. Under these conditions increased adrenal and hepatic 11β-hydroxysteroid dehydrogenase activity may be responsible for maintenance of elevated levels of the main glucocorticoid in blood and tissues. Factor analysis revealed impairments in intersystem relationships between the adrenocortical and renin-angiotensin systems in experimental diabetes thus suggesting disintegration of regulatory systems.  相似文献   

4.
In order to evaluate the effect of prostaglandin release on renal autoregulation in the intact kidney of the dog, pressure-flow curves were obtained before and after the administration of either indomethacin or meclofenamate, two potent prostaglandin synthetase inhibitors. After drug administration renal venous prostaglandin E decreased in each of eight studies with a mean change from 286 to 141 pg/ml (p < .001). In addition, prostaglandin inhibition was associated with a 31 percent decrease in renal blood flow and a 58 percent increase in renal resistance. Yet, as renal perfusion pressure was decreased by aortic constriction, the change in flow per pressure reduction and the percent change in renal resistance were not significantly different after prostaglandin inhibition when compared to control values in the same animals. The magnitude of the pressure range over which autoregulation was maintained was also similar in the two groups although both the initial and lowest level of autoregulation were slightly higher after prostaglandin inhibition. It is concluded that the administration of these prostaglandin synthetase inhibitors does not significantly impair renal autoregulation in the intact dog kidney.  相似文献   

5.
Activation of the renin-angiotensin system has a pivotal role in the pathogenesis of diabetic complications. However, recent evidence suggests that it may also contribute to the development of diabetes itself. In the endocrine pancreas, all the components of an active renin-angiotensin system are present, which modulate a range of activities including local blood flow, hormone release and prostaglandin synthesis. In both types 1 and 2 diabetes, there is an up-regulation of its expression and activity in the endocrine pancreas. Whether these changes have a direct pathogenetic role or reflect a response to local stress or tissue injury remains to be established. Angiotensin-mediated increases in oxidative stress, inflammation and free fatty acids levels potentially contribute to beta-cell dysfunction in diabetes. In addition, activation of the renin-angiotensin system appears to potentiate the action of other pathogenic pathways including glucotoxicity, lipotoxicity and advanced glycation. In experimental models of type 2 diabetes, blockade of the renin-angiotensin system with angiotensin converting enzyme inhibitors or angiotensin receptor antagonists results in the improvement of islet structure and function. Moreover, the incidence of de novo diabetes appears to be significantly reduced by blockade of the renin-angiotensin system in clinical studies. At least two large controlled trials are currently underway to study the role of renin-angiotensin system in the development of diabetes. It is hoped that these studies will demonstrate the true potential of the blockade of the renin-angiotensin system for the prevention of diabetes.  相似文献   

6.
Prostaglandins are part of the family of oxygenated metabolites of arachidonic acid known collectively as eicosanoids. While they are formed, act, and are inactivated locally and rarely circulate in plasma, they can affect blood flow in some tissues and so might contribute to the control of peripheral vascular resistance. Few studies have shown any derangement of total body prostaglandin synthesis or metabolism in hypertension, but increased renal synthesis of one prostanoid, thromboxane A2, has been noted in spontaneously hypertensive rats and some hypertensive humans. This potent vasoconstrictor may account for the increased renal vascular resistance and suppressed plasma renin activity seen in many patients with hypertension. Increased renal vascular resistance could increase the blood pressure directly as a component of total peripheral resistance or indirectly by increasing glomerular filtration fraction and tubular sodium reabsorption. Specific thromboxane synthesis inhibitors not only decrease renal thromboxane production but also increase renal vasodilator prostaglandin synthesis when prostaglandin synthesis is stimulated. This redirection of renal prostaglandin synthesis toward prostacyclin might be of benefit in correcting a fundamental renal defect in patients with hypertension.  相似文献   

7.
Atrial natriuretic peptide (ANP) can excite cardiac nerve endings and invoke a decrease in arterial blood pressure and a reduction in renal sympathetic nerve activity. Our laboratory has previously demonstrated that this renal depressor reflex was invoked by systemic injection of ANP and not by the direct application of ANP to the epicardium, a major locus for vagal afferents. We now examine whether inhibition of prostaglandin synthesis impairs reflex responses that are normally associated with ANP injections. Renal sympathetic nerve activity, arterial blood pressure, and heart rate were recorded in anesthetized rats. Indomethacin was used to inhibit prostaglandin synthesis through the cyclooxygenase pathway. The ANP-mediated decrease in arterial blood pressure and renal sympathetic nerve activity, observed when prostaglandin synthesis was inhibited, did not differ significantly from the decreases observed in these parameters when prostaglandin synthesis was not inhibited. Heart rate remained unchanged. Our results suggest that the sympatho-inhibitory effects of ANP do not require prostaglandins as intermediary compounds.  相似文献   

8.
The purpose of this study was to examine the role of prostaglandins in the redistribution of renal cortical blood flow that occurs following reductions in renal perfusion pressure. The distribution of blood flow to the renal cortex was examined using radio-labeled microspheres (15 +/- 1 micron). It was found that in animals not treated with a prostaglandin synthesis inhibitor a decrease in renal perfusion pressure to the limit of renal blood flow autoregulation was associated with a decrease in fractional flow to the outer cortex (Zone I) and an increase in fractional flow to the inner cortex (Zones III and IV). A further decrease in renal perfusion pressure below the limit of autoregulation produced a further decrease in the fractional flow to Zone I and a further increase in fractional flow to Zones III and IV. In contrast, in animals treated with the prostaglandin synthesis inhibitor meclofenamate (5 mg/kg, i.v. bolus) a reduction in renal perfusion pressure to the limit of renal blood flow autoregulation produced no change in fractional blood flow to any of the 4 cortical zones. A further decrease in renal perfusion pressure, however, did produce a fall in fractional blood flow to Zone I and an increase in fractional flow to Zones III and IV. In conclusion, the results of this study indicate that within, but not below, the limit of renal blood flow autoregulation prostaglandin synthesis is an important factor in the regulation of renal cortical blood flow distribution.  相似文献   

9.
When renal function is compromised, the circulation to the kidney is sustained by a major prostaglandin component, withdrawal of which results in significant hemodynamic effects, particularly reduction in blood flow to the inner cortex and medulla. Prostaglandins modulate the effects of vasoactive hormones by attenuating the renal actions of the renin-angiotensin system and contributing to and, perhaps, mediating some of those of the kallikreinkinin system. In addition, a prostaglandin mechanism, presumably located in the renal arterioles, participates in the regulation of renin release. Although cyclooxygenase is present in several renal tissues, the major products of arachidonic acid metabolism may be tissue specific and, consequently, their effects may be primarily restricted to one compartment, e.g., the proposed interaction of prostacyclin and renin within the vascular pole of the glomerulus; and PGE2/PGF2a with the kallikrein-kinin system within the urinary compartment. The former is related to the regulation of renin release and renal vascular resistance and the latter to the excretion of water and perhaps salt.  相似文献   

10.
The effect of prostaglandin synthesis inhibitor indomethacin was studied on renal haemodynamics by radioactive microspheres in untreated control dogs and in animals treated by the alfa-adrenergic receptor blocking agent phentolamine or by the adrenergic neuron blocking agent guanethidine. RBF was reduced by indomethacin. The reduction of blood flow was more pronounced in the inner cortical zones, which resulted in a blood flow redistribution towards the superficial cortical regions. Urine flow, osmotic concentration and electrolyte excretion did not change significantly. Pretreatment by phentolamine or by guanethidine did not influence the effect of indomethacin on renal haemodynamics or renal function. These data suggest that the sympathetic nervous system is not involved in the renal effects of indomethacin.  相似文献   

11.
The present study was designed to investigate the involvement of the renal nerve in glucocorticoid hypertension and to assess the role of the renin-angiotensin system in dexamethasone-induced hypertension. The elevated blood pressure in dexamethasone treated rats showing a significant increase in plasma renin concentration (PRC) and activity (PRA) was attenuated dose-dependently by the angiotensin I converting enzyme (ACE) inhibition. Bilateral renal denervation caused a partial decrease in the elevated blood pressure, abolished the increased PRC and PRA, and reduced the dose-dependent decrease in blood pressure with ACE inhibition in dexamethasone treated rats. Although the reduction in body weight and increases in urine volume, urinary sodium excretion and hematocrit were clearly seen following dexamethasone administration, dexamethasone-treated renal denervated rats showed the same degree of change in any of the variables as dexamethasone-treated sham-operated rats. Thus, our results indicate that the stimulation of the renin-angiotensin system through the activation of the renal nerve may be partially responsible for the dexamethasone-induced high blood pressure and, therefore, bilateral renal denervation reduces, partially but significantly, the elevated blood pressure, suggesting that the attenuation of oversecretion of renin contributes to the lowering of the blood pressure.  相似文献   

12.
The effect of indomethacin, an inhibitor of prostaglandin (PG) synthesis, was studied on the renal circulation, Na+ and water excretion in anaesthesized dogs during alpha-receptor inhibition. Indomethacin decreased cortical blood flow (CBFcontr, 454 +/- 142; CBFindo, 332 +/- 51 ml per min per 100 g; p less than 0.02) as well as medullary blood flow (OMBFcontr, 339 +/- 95; OMBFindo, 183 +/- 46 ml per min per 100 g; p less than 0.001), salt and water excretion, further it caused a shift in the intrarenal blood flow distribution toward the cortex. Alpha-blockade prevented the indomethacin-induced vasoconstriction in the cortex (CBF alpha inhibition + indo, 455 +/- 76 ml per min per 100 g) but not in the medullar (OMBF alpha inhibition + indo, 259 +/- 102 ml per min per 100 g, p less than 0.05). Alpha-blockade failed to prevent the indomethacin-induced antidiuresis, antinatriuresis and the intrarenal blood flow redistribution. GFR remained unaffected in all three series of studies. Our experimental findings are in line with the presumption that alpha-receptors are involved in the renal circulatory changes caused by indomethacin, probably as a result of an enhanced NE release during the inhibition of PG production. A NE--PG feed back mechanism is suggested in the regulation of renal circulation. The reduction of salt and water output induced by indomethacin appears to be independent of the alterations in renal haemodynamics, and seems rather to be the result of enhanced Na+ reabsorption, predominantly at the distal segment of the nephron, in the absence of PG, and/or a direct action of indomethacin.  相似文献   

13.
Renal glomeruli have cyclo-oxygenase and lipoxygenase enzymes which convert arachidonic acid to prostaglandins, thromboxane and 12-hydroxyeicosatetraenoic acid. Glomerular epithelial and mesangial cells, in culture, also synthesize these arachidonate products. Angiotensin and vasopressin contract mesangial cells and stimulate mesangial synthesis of PGE2. PGE2, in the glomerulus, antagonizes the actions of angiotensin on the mesangium and hence reduces angiotensin-mediated glomerular contraction. Glomerular immune injury (nephrotoxic serum nephritis) augments glomerular production of prostaglandins and thromboxane. Thromboxane reduces glomerular function and inhibition of thromboxane synthesis preserves glomerular filtration rate and renal plasma flow in this disease model. Spontaneously hypertensive rats also have enhanced glomerular prostaglandin and thromboxane synthesis. Although acute inhibition of thromboxane synthesis will vasodilate the hypertensive rat kidney, chronic inhibition does not reduce blood pressure or increase renal blood flow.  相似文献   

14.
Renal distribution of prostaglandin synthetase is mainly medullary, whereas the major degrading enzyme, prostaglandin dehydrogenase is primarily cortical. This suggests that prostaglandins (PG) released from the renal medulla could affect the medullary blood vessels. In two different experiments we studied the role of PG in the regulation of renal papillary plasma flow in the rat. First study: PG synthesis were stimulated in 34 adult Sprague-Dawley rats by bleeding from the femoral artery 1% of the body weight over a period of 10 minutes. Following this, indomethacin (a PG inhibitor, 10 mg/kg i.v.) was given slowly and then renal papillary plasma flow was measured 25 minutes after the end of infusion. In 17 indomethacin rats the renal papillary plasma flow averaged 18.8 ml/100 g/minute, whereas it averaged 23.0 in 17 non-indomethacin rats given diluent, an 18% reduction (p less than .025). Second study: Male Sprague-Dawley rats were made prostaglandin deficient by fasting rats for one week, followed by 10% dextrose fluid for one week and subsequent institution of an essential fatty acid (EFA) deficient diet for two weeks. With urinary PG excretion in prostaglandin deficient rats 28 ng/24 hours compared to 149 ng in control rats, they could be considered as prostaglandin deficient. When renal papillary plasma flow was measured, the 16 prostaglandin deficient rats had a 16% lower papillary plasma flow than 16 control rats, 21.6 vs 25.6 (p less than .005). These results clearly demonstrate that PG inhibition in rats decreases plasma flow to the papilla, strongly suggesting that PG are vasodilators for the vessels supplying the renal papilla.  相似文献   

15.
Ethacrynic acid administered to anesthetized dogs was found to increase the level of prostaglandin E as determined by radioimmunoassay in renal venous blood at the time when renal blood flow was increased by this agent. No change was found in the renal venous level of prostaglandin F. When ethacrynic acid was administered after treatment with indomethacin, which blocks the increase in renal blood flow induced by the natriuretic agent, no increase in the renal venous level of prostaglandin E was seen. Thus, the dilation of the renal vasculature would appear to be caused by a stimulation of synthesis and release of prostaglandin E by ethacrynic acid.  相似文献   

16.
A prominent action of converting enzyme inhibitors, such as captopril, is a reduction in angiotensin II formation, but interpretation of responses has been complicated by the potential for such agents to reduce bradykinin degradation and promote prostaglandin release. To assess the specificity of the action of captopril, we pretreated rabbits with desoxycorticosterone and a high sodium intake, to suppress the renin-angiotensin system and thus maximize the renal vascular responses which might be unrelated to angiotensin II. Captopril was infused intravenously in graded dosage from 10 to 3,000 μg/kg, and renal blood flow measured with an electromagnetic flowmeter. Despite suppression of the renin system, captopril increased renal blood flow from 3.7 ± 0.5 to 5.3 ± 0.8 ml/g/min (p < .001) in 7 rabbits. In 6 additional rabbits, captopril was superimposed on a saralasin infusion (1.0 μg/kg/min) in a dose sufficient to block responses to endogenous angiotensin II. Saralasin prevented entirely the renal vasodilator response to captopril. Two surprising conclusions derive from this study: first, the renal vasodilator response to captopril appears to be specific for a reduction in angiotensin II formation; second, endogenous angiotensin appears to contribute to renal vascular tone, at least when anesthesia is employed, even when the renin system has been suppressed by a combination of a high sodium intake and desoxycorticosterone.  相似文献   

17.
Reversal of renovascular hypertension: role of the renal medulla   总被引:1,自引:0,他引:1  
The fall in blood pressure, which occurs when renovascular hypertension is corrected surgically, offers a means of elucidating the factors responsible for blood pressure control. When Goldblatt two-kidney, one-clip hypertension in the rat is reversed by unclipping the renal artery, or by removal of the ischaemic kidney, restoration of normal blood pressure is due to a fall in peripheral resistance. This is associated with sodium retention and cannot be modified by inhibition of the renin-angiotensin system. The fall is, however, partially inhibited by chemical removal of the renal medulla by means of 2-bromo-ethylamine hydrobromide. When normal rats are chemically medullectomized, moderate hypertension is produced, which cannot be attributed to the renin-angiotensin system or sodium retention. It is concluded that a renomedullary vasodepressor system is ablated by chemical medullectomy: further, this system plays a role in the surgical correction of Goldblatt hypertension.  相似文献   

18.
The renin-angiotensin (RAS) and kallikrein-kinin (KKS) systems play a key role in multiple physiological and pathophysiological conditions, including growth and development, inflammation, blood pressure regulation and control of renal function. In many instances, kinins and angiotensin II work together, e.g., during development, whereas they oppose each other's actions in the regulation of vascular tone and renal function. The RAS and KKS systems also interact at multiple levels, so that changes in the activity of one system greatly impact the activity of the other. The purpose of this brief review is to highlight recent knowledge regarding interactions at the cellular and molecular levels between the two systems, with an emphasis on the coordinate developmental regulation of these phylogenetically conserved vasoactive systems.  相似文献   

19.
Excessive sympathetic drive is a hallmark of chronic heart failure (HF). Disease progression can be correlated with plasma norepinephrine concentration. Renal function is also correlated with disease progression and prognosis. Because both the renal nerves and renin-angiotensin II system are activated in chronic HF we hypothesized that excessive renal sympathetic nerve activity decreases renal blood flow in HF and is associated with changes in angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) expression. The present study was carried out in conscious, chronically instrumented rabbits with pacing-induced HF. We found that rabbits with HF showed a decrease in mean renal blood flow (19.8±1.6 in HF vs. 32.0±2.5 ml/min from prepace levels; P<0.05) and an increase in renal vascular resistance (3.26±0.29 in HF vs. 2.21±0.13 mmHg·ml(-1)·min in prepace normal rabbits; P<0.05) while the blood flow and resistance was not changed in HF rabbits with the surgical renal denervation. Renal AT1R expression was increased by ~67% and AT2R expression was decreased by ~87% in rabbits with HF; however, kidneys from denervated rabbits with HF showed a near normalization in the expression of these receptors. These results suggest renal sympathetic nerve activity elicits a detrimental effect on renal blood flow and may be associated with alterations in the expression of angiotensin II receptors.  相似文献   

20.
C J Hawley 《Prostaglandins》1982,23(3):397-409
The effect of prednisolone on prostaglandin (PG) synthesis by rectal biopsies in organ culture was investigated using laminary flow bioassay and radioimmunoassay (RIA) or PGE2. Prednisolone was consistently found to inhibit basal synthesis in cultures whose duration ranged from 2-40 hours. This appeared to be both time and dose dependent. The ability of biopsies homogenised at the end of culture to transform exogenous arachidonic acid into PGE2 under defined conditions was also investigated and operationally designated cyclooxygenase activity. Prior treatment with prednisolone resulted in a reduction in cyclooxygenase activity. This inhibition occurred with a longer latency and to a lesser extent than inhibition of overall basal synthesis. These results suggest that corticosteroids, in addition to their know (indirect) inhibitory action on phospholipase activity, also affect cycloooxygenase activity. The most likely mechanism are either a repression of synthesis of fresh cyclooxygenase enzyme of induction of an endogenous inhibitor of cyclooxygenase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号