首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
Dystrophin is a multidomain protein that links the actin cytoskeleton to laminin in the extracellular matrix through the dystrophin associated protein (DAP) complex. The COOH-terminal domain of dystrophin binds to two components of the DAP complex, syntrophin and dystrobrevin. To understand the role of syntrophin and dystrobrevin, we previously generated a series of transgenic mouse lines expressing dystrophins with deletions throughout the COOH-terminal domain. Each of these mice had normal muscle function and displayed normal localization of syntrophin and dystrobrevin. Since syntrophin and dystrobrevin bind to each other as well as to dystrophin, we have now generated a transgenic mouse deleted for the entire dystrophin COOH-terminal domain. Unexpectedly, this truncated dystrophin supported normal muscle function and assembly of the DAP complex. These results demonstrate that syntrophin and dystrobrevin functionally associate with the DAP complex in the absence of a direct link to dystrophin. We also observed that the DAP complexes in these different transgenic mouse strains were not identical. Instead, the DAP complexes contained varying ratios of syntrophin and dystrobrevin isoforms. These results suggest that alternative splicing of the dystrophin gene, which naturally generates COOH-terminal deletions in dystrophin, may function to regulate the isoform composition of the DAP complex.  相似文献   

2.
Dystrophin coordinates the assembly of a complex of structural and signalling proteins that is required for normal muscle function. A key component of the dystrophin-associated protein complex (DPC) is alpha-dystrobrevin, a dystrophin-related and -associated protein whose absence results in muscular dystrophy and neuromuscular junction defects [1,2]. The current model of the DPC predicts that dystrophin and dystrobrevin each bind a single syntrophin molecule [3]. The syntrophins are PDZ-domain-containing proteins that facilitate the recruitment of signalling proteins such as nNOS (neuronal nitric oxide synthase) to the DPC [4]. Here we show, using yeast two-hybrid analysis and biochemical binding studies, that alpha-dystrobrevin in fact contains two independent syntrophin-binding sites in tandem. The previously undescribed binding site is situated within an alternatively spliced exon of alpha-dystrobrevin, termed the variable region-3 (vr3) sequence, which is specifically expressed in skeletal and cardiac muscle [5,6]. Analysis of the syntrophin-binding region of dystrobrevin reveals a tandem pair of predicted alpha helices with significant sequence similarity. These alpha helices, each termed a syntrophin-binding motif, are also highly conserved in dystrophin and utrophin. Together these data show that there are four potential syntrophin-binding sites per dystrophin complex in skeletal muscle: two on dystrobrevin and two on dystrophin or utrophin. Furthermore, alternative splicing of dystrobrevin provides a mechanism for regulating the stoichiometry of syntrophin association with the DPC. This is likely to have important consequences for the recruitment of specific signalling molecules to the DPC and ultimately for its function.  相似文献   

3.
4.
Dystrophin and its associated proteins were originally identified in skeletal muscle, where the complex provides mechanical stabilization to the sarcolemma during contraction. However, the dystrophin complex is also present at membrane specializations in many non-muscle cells, including synaptic sites in neurons. The function of the dystrophin complex at these sites is still unknown, but emerging results suggest that the dystrophin complex can function as a scaffold for signaling proteins. In this review, we examine the growing body of evidence that suggests the dystrophin complex may have a dual function: membrane stabilization and transmembrane signaling. We focus on the role of two dystrophin-associated proteins, syntrophin and dystrobrevin, in the formation of a signaling scaffold and review evidence suggesting a role in synapse formation and maintenance.  相似文献   

5.
Dystrobrevin is one of the intracellular components of the transmembrane dystrophin-glycoprotein complex (DGC). The functional role of this complex in normal and pathological situations has not yet been clearly established. Dystrobrevin disappears from the muscle membrane in Duchenne muscular dystrophy (DMD), which results from dystrophin mutations, as well as in limb girdle muscular dystrophies (LGMD), which results from mutations affecting other members of the DGC complex. These findings therefore suggest that dystrobrevin may play a pivotal role in the progression of these clinically related diseases. In this study, we used the Caenorhabditis elegans model to address the question of the relationship between dystrobrevin binding to dystrophin and dystrobrevin function. Deletions of the dystrobrevin protein were performed and the ability of the mutated forms to bind to dystrophin was tested both in vitro and in a two-hybrid assay, as well as their ability to rescue dystrobrevin (dyb-1) mutations in C. elegans. The deletions affecting the second helix of the Dyb-1 coiled-coil domain abolished the binding of dystrobrevin to dystrophin both in vitro and in the two-hybrid assay. These deletions also abolished the rescuing activity of a functional transgene in vivo. These results are consistent with a model according to which dystrobrevin must bind to dystrophin to be able to function properly.  相似文献   

6.
7.
Dystrobrevins are protein components of the dystrophin complex, whose disruption leads to Duchenne muscular dystrophy and related diseases. The Caenorhabditis elegans dystrobrevin gene (dyb-1) encodes a protein 38 % identical with its mammalian counterparts. The C. elegans dystrobrevin is expressed in muscles and neurons. We characterised C. elegans dyb-1 mutants and showed that: (1) their behavioural phenotype resembles that of dystrophin (dys-1) mutants; (2) the phenotype of dyb-1 dys-1 double mutants is not different from the single ones; (3) dyb-1 mutants are more sensitive than wild-type animals to reductions of acetylcholinesterase levels and have an increased response to acetylcholine; (4) dyb-1 mutations alone do not lead to muscle degeneration, but synergistically produce a progressive myopathy when combined with a mild MyoD/hlh-1 mutation. All together, these findings further substantiate the role of dystrobrevins in cholinergic transmission and as functional partners of dystrophin.  相似文献   

8.
Dystrobrevins are a family of widely expressed dystrophin-associated proteins that comprises alpha and beta isoforms and displays significant sequence homology with several protein-binding domains of the dystrophin C-terminal region. The complex distribution of the multiple dystrobrevin isoforms suggests that the variability of their composition may be important in mediating their function. We have recently identified kinesin as a novel dystrobrevin-interacting protein and localized the dystrobrevin-binding site on the cargo-binding domain of neuronal kinesin heavy chain (Kif5A). In the present study, we assessed the kinetics of the dystrobrevin-Kif5A interaction by quantitative pull-down assay and surface plasmon resonance (SPR) analysis and found that beta-dystrobrevin binds to kinesin with high affinity (K(D) approximately 40 nM). Comparison of the sensorgrams obtained with alpha and beta-dystrobrevin at the same concentration of analyte showed a lower affinity of alpha compared to that of beta-dystrobrevin, despite their functional domain homology and about 70% sequence identity. Analysis of the contribution of single dystrobrevin domains to the interaction revealed that the deletion of either the ZZ domain or the coiled-coil region decreased the kinetics of the interaction, suggesting that the tertiary structure of dystrobrevin may play a role in regulating the interaction of dystrobrevin with kinesin. In order to understand if structural changes induced by post-translational modifications could affect dystrobrevin affinity for kinesin, we phosphorylated beta-dystrobrevin in vitro and found that it showed reduced binding capacity towards kinesin. The interaction between the adaptor/scaffolding protein dystrobrevin and the motor protein kinesin may play a role in the transport and targeting of components of the dystrophin-associated protein complex to specific sites in the cell, with the differences in the binding properties of dystrobrevin isoforms reflecting their functional diversity within the same cell type. Phosphorylation events could have a regulatory role in this context.  相似文献   

9.
Syntrophins are a family of PDZ domain-containing adaptor proteins required for receptor localization. Syntrophins are also associated with the dystrophin complex in muscles. We report here the molecular and functional characterization of the Caenorhabditis elegans gene stn-1 (F30A10.8), which encodes a syntrophin with homology to vertebrate alpha and beta-syntrophins. stn-1 is expressed in neurons and in muscles of C.elegans. stn-1 mutants resemble dystrophin (dys-1) and dystrobrevin (dyb-1) mutants: they are hyperactive, bend their heads when they move forward, tend to hypercontract, and are hypersensitive to the acetylcholinesterase inhibitor aldicarb. These phenotypes are suppressed when stn-1 is expressed under the control of a muscular promoter, indicating that they are caused by the absence of stn-1 in muscles. These results suggest that the role of syntrophin is linked to dystrophin function in C.elegans.  相似文献   

10.
Dystrophin is a 427 kDa sub-membrane cytoskeletal protein, associated with the inner surface membrane and incorporated in a large macromolecular complex of proteins, the dystrophin-associated protein complex (DAPC). In addition to dystrophin the DAPC is composed of dystroglycans, sarcoglycans, sarcospan, dystrobrevins and syntrophin. This complex is thought to play a structural role in ensuring membrane stability and force transduction during muscle contraction. The multiple binding sites and domains present in the DAPC confer the scaffold of various signalling and channel proteins, which may implicate the DAPC in regulation of signalling processes. The DAPC is thought for instance to anchor a variety of signalling molecules near their sites of action. The dystroglycan complex may participate in the transduction of extracellular-mediated signals to the muscle cytoskeleton, and β-dystroglycan was shown to be involved in MAPK and Rac1 small GTPase signalling. More generally, dystroglycan is view as a cell surface receptor for extracellular matrix proteins. The adaptor proteins syntrophin contribute to recruit and regulate various signalling proteins such as ion channels, into a macromolecular complex. Although dystrophin and dystroglycan can be directly involved in signalling pathways, syntrophins play a central role in organizing signalplex anchored to the dystrophin scaffold. The dystrophin associated complex, can bind up to four syntrophin through binding domains of dystrophin and dystrobrevin, allowing the scaffold of multiple signalling proteins in close proximity. Multiple interactions mediated by PH and PDZ domains of syntrophin also contribute to build a complete signalplex which may include ion channels, such as voltage-gated sodium channels or TRPC cation channels, together with, trimeric G protein, G protein-coupled receptor, plasma membrane calcium pump, and NOS, to enable efficient and regulated signal transduction and ion transport. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

11.
Inward rectifier potassium (Kir) channels play important roles in the maintenance and control of cell excitability. Both intracellular trafficking and modulation of Kir channel activity are regulated by protein-protein interactions. We adopted a proteomics approach to identify proteins associated with Kir2 channels via the channel C-terminal PDZ binding motif. Detergent-solubilized rat brain and heart extracts were subjected to affinity chromatography using a Kir2.2 C-terminal matrix to purify channel-interacting proteins. Proteins were identified with multidimensional high pressure liquid chromatography coupled with electrospray ionization tandem mass spectrometry, N-terminal microsequencing, and immunoblotting with specific antibodies. We identified eight members of the MAGUK family of proteins (SAP97, PSD-95, Chapsyn-110, SAP102, CASK, Dlg2, Dlg3, and Pals2), two isoforms of Veli (Veli-1 and Veli-3), Mint1, and actin-binding LIM protein (abLIM) as Kir2.2-associated brain proteins. From heart extract purifications, SAP97, CASK, Veli-3, and Mint1 also were found to associate with Kir2 channels. Furthermore, we demonstrate for the first time that components of the dystrophin-associated protein complex, including alpha1-, beta1-, and beta2-syntrophin, dystrophin, and dystrobrevin, interact with Kir2 channels, as demonstrated by immunoaffinity purification and affinity chromatography from skeletal and cardiac muscle and brain. Affinity pull-down experiments revealed that Kir2.1, Kir2.2, Kir2.3, and Kir4.1 all bind to scaffolding proteins but with different affinities for the dystrophin-associated protein complex and SAP97, CASK, and Veli. Immunofluorescent localization studies demonstrated that Kir2.2 co-localizes with syntrophin, dystrophin, and dystrobrevin at skeletal muscle neuromuscular junctions. These results suggest that Kir2 channels associate with protein complexes that may be important to target and traffic channels to specific subcellular locations, as well as anchor and stabilize channels in the plasma membrane.  相似文献   

12.
Membrane scaffolding complexes are key features of many cell types, serving as specialized links between the extracellular matrix and the actin cytoskeleton. An important scaffold in skeletal muscle is the dystrophin-associated protein complex. One of the proteins bound directly to dystrophin is syntrophin, a modular protein comprised entirely of interaction motifs, including PDZ (protein domain named for PSD-95, discs large, ZO-1) and pleckstrin homology (PH) domains. In skeletal muscle, the syntrophin PDZ domain recruits sodium channels and signaling molecules, such as neuronal nitric oxide synthase, to the dystrophin complex. In epithelia, we identified a variation of the dystrophin complex, in which syntrophin, and the dystrophin homologues, utrophin and dystrobrevin, are restricted to the basolateral membrane. We used exogenously expressed green fluorescent protein (GFP)-tagged fusion proteins to determine which domains of syntrophin are responsible for its polarized localization. GFP-tagged full-length syntrophin targeted to the basolateral membrane, but individual domains remained in the cytoplasm. In contrast, the second PH domain tandemly linked to a highly conserved, COOH-terminal region was sufficient for basolateral membrane targeting and association with utrophin. The results suggest an interaction between syntrophin and utrophin that leaves the PDZ domain of syntrophin available to recruit additional proteins to the epithelial basolateral membrane. The assembly of multiprotein signaling complexes at sites of membrane specialization may be a widespread function of dystrophin-related protein complexes.  相似文献   

13.
Since all organs (i.e. skeletal, cardiac, smooth muscles and sciatic nerve) are never only taken from a single patient, all these tissues were obtained from one cynomolgus monkey, a model closely resembling humans. This work describes an up-to-date reinvestigation of the dystrophin-glycoprotein complex and related molecules in various monkey tissues such those cited above. We used monoclonal and polyclonal antibodies produced in our laboratory, which are directed against dystrophin, utrophin, short-dystrophin products, alpha-dystrobrevin, beta-dystroglycan, alpha-syntrophin, alpha-, beta-, gamma-, delta-, epsilon-sarcoglycan, and sarcospan. For each molecule, we determined their molecular weight and tissue localization. Regardless of the tissue analyzed, at least one dystrophin or utrophin as full-length molecule and one short-dystrophin product or dystrobrevin as proteins belonging to the dystrophin superfamily were found. Beta-dystroglycan, beta and delta sarcoglycans were always detected, while other sarcoglycans varied from all to only three components. Epsilon sarcoglycan appears to be specific to smooth muscle, which is devoid of alpha sarcoglycan. Sarcospan is only absent from sciatic nerve structures. Among the different muscles investigated in this study, short dystrophin products are only present in cardiac muscle. All of these findings are summarized in one table, which highlight in one single animal the variability of the dystrophin-glycoprotein complex components in relation with the organ studied. This statement is important because any attempt to estimate protein restoration needs in each study the knowledge of the expected components that should be considered normal.  相似文献   

14.
Dysbindin was first identified by the yeast two hybrid assay as a binding partner of dystrobrevin which is a cytoplasmic member of dystrophin glycoprotein complex. Immunolocalization of dystrobrevin in the astrocyte endfeet and endothelial cells in the rat cerebellum was reported. Therefore, we were interested in the expression and localization of dystrobrevin binding protein dysbindin in the mouse brain capillary wall and its surrounding astroglial endfeet. We examined whether the dysbindin expression is present in astroglial endfeet and/or capillary endothelial cells at light and electron microscopic levels. Using brain samples from five normal mice (C57BL/6ScSn), we prepared the anti-dysbindin antibody stained brain samples with immunoperoxidase method at light microscopic level and with immunogold method at ultrastructural level. Immunohistochemistry showed that dysbindin was located in the brain capillary at light microscopic level. Immunogold electron microscopy revealed that dysbindin signal was observed at the inside surface of plasma membrane of glial endfeet which surrounded the brain capillary endothelial cells and pericytes.  相似文献   

15.
Dystrophin plays an important role in skeletal muscle by linking the cytoskeleton and the extracellular matrix. The amino terminus of dystrophin binds to actin and possibly other components of the subsarcolemmal cytoskeleton, while the carboxy terminus associates with a group of integral and peripheral membrane proteins and glycoproteins that are collectively known as the dystrophin-associated protein (DAP) complex. We have generated transgenic/mdx mice expressing "full-length" dystrophin constructs, but with consecutive deletions within the COOH- terminal domains. These mice have enabled analysis of the interaction between dystrophin and members of the DAP complex and the effects that perturbing these associations have on the dystrophic process. Deletions within the cysteine-rich region disrupt the interaction between dystrophin and the DAP complex, leading to a severe dystrophic pathology. These deletions remove the beta-dystroglycan-binding site, which leads to a parallel loss of both beta-dystroglycan and the sarcoglycan complex from the sarcolemma. In contrast, deletion of the alternatively spliced domain and the extreme COOH terminus has no apparent effect on the function of dystrophin when expressed at normal levels. The proteins resulting from these latter two deletions supported formation of a completely normal DAP complex, and their expression was associated with normal muscle morphology in mdx mice. These data indicate that the cysteine-rich domain is critical for functional activity, presumably by mediating a direct interaction with beta-dystroglycan. However, the remainder of the COOH terminus is not required for assembly of the DAP complex.  相似文献   

16.
In this study, the presence and cellular distribution of dystrophin family products (i.e. Dp71d, Dp71f-like protein and dystrobrevin) was examined by indirect immunofluorescence and Western blotting in guinea pig spermatozoa. Two dystrophin-associated proteins, beta-dystroglycan and alpha-syntrophin, and nNOS a protein frequently associated with alpha-syntrophin, were determined. In spermatozoa lacking plasma membrane and acrosome, Dp71f-like protein was found in the postacrosomal perinuclear theca and also in the middle piece of the flagellum. In the flagellum, Dp71f-like protein is localized together with alpha-syntrophin and nNOS. Dp71d was present in the plasma membrane of the middle piece with beta-dystroglycan, alpha-syntrophin and nNOS. Dp71d was also present in plasma membrane of the post acrosomal region, but only with nNOS. Finally, dystrobrevin was located all along skeletal flagellum structures and in the subacrosomal hemisphere of the perinuclear theca. This distinct and complementary distribution in various domains of spermatozoa may reveal a specific function for each short dystrophin family product, in the stabilization of the domains where they are located.  相似文献   

17.
Dystroglycan is an integral member of the skeletal muscle dystrophin glycoprotein complex, which links dystrophin to proteins in the extracellular matrix. Recently, a group of human muscular dystrophy disorders have been demonstrated to result from defective glycosylation of the α-dystroglycan subunit. Genetic studies of these diseases have identified six genes that encode proteins required for the synthesis of essential carbohydrate structures on dystroglycan. Here we highlight their known or postulated functions. This glycosylation pathway appears to be highly specific (dystroglycan is the only substrate identified thus far) and to be highly conserved during evolution.  相似文献   

18.
In muscle, dystrophin anchors a complex of proteins at the cell surface which includes alpha-dystroglycan, beta-dystroglycan, syntrophins and dystrobrevins. Mutations in the dystrophin gene lead to muscular dystrophy and mental retardation. In contrast to muscle, little is known about the localization and the molecular interactions of dystrophin and dystrophin associated proteins (DAPs) in brain. In the present study, we show that alpha-dystroglycan and dystrophin are localized to large neurones in cerebral cortex, hippocampus, cerebellum and spinal cord. Furthermore, we show that dystroglycan is a member of three distinct dystrophin-containing complexes. Two of these complexes contain syntrophin and both dystrophin and syntrophin are enriched in post-synaptic densities. These data suggest that dystrophin and DAPs may have a role in the organization of CNS synapses. Interestingly, the enrichment for syntrophin in post-synaptic densities is not affected in mice mutant for all dystrophin isoforms. Thus in the brain, unlike in muscle, the association of syntrophin with dystrophin is not crucial for the DAP complex which suggests that it may be associated with other proteins.  相似文献   

19.
Dystrophin is an essential component in the assembly and maintenance of the dystrophin-associated protein complex (DAPC), which includes members of the dystroglycan, syntrophin, sarcoglycan and dystrobrevin protein families. Distinctive complexes have been described in the cell membrane of different tissues and cultured cells. In this work, we report the identification and characterization of a novel DAPC present in the nuclei of HeLa cells, which contains dystrophin Dp71 as a key component. Using confocal microscopy and cell fractionation analyses, we found the presence of Dp71, beta-sarcoglycan, beta-dystroglycan, alpha- and beta-syntrophin, alpha1- and beta-dystrobrevin and nNOS in the nuclei of HeLa cells. Furthermore, we demonstrated by co-immunoprecipitation experiments that most of these proteins form a complex in the nuclear compartment. Next, we analyze the possible association of the nuclear DAPC with the nuclear matrix. We found the presence of Dp71, beta-dystroglycan, nNOS, beta-sarcoglycan, alpha/beta syntrophin, alpha1-dystrobrevin and beta-dystrobrevin in the nuclear matrix protein fractions and in situ nuclear matrix preparations from HeLa cells. Moreover, we found that Dp71, beta-dystroglycan and beta-dystrobrevin co-immunoprecipitated with the nuclear matrix proteins lamin B1 and actin. The association of members of the nuclear DAPC with the nuclear matrix indicates that they may work as scaffolding proteins involved in nuclear architecture.  相似文献   

20.
Neuman S  Kaban A  Volk T  Yaffe D  Nudel U 《Gene》2001,263(1-2):17-29
The gene which is defective in Duchenne muscular dystrophy (DMD) is the largest known gene containing at least 79 introns, some of which are extremely large. The product of the gene in muscle, dystrophin, is a 427 kDa protein. The same gene encodes at least two additional non-muscle full length dystrophin isoforms transcribed from different promoters located in the 5'-end region of the gene, and four smaller proteins transcribed from internal promoters located further downstream, and lack important domains of dystrophin. Several other genes, encoding evolutionarily related proteins, have been identified. To study the evolution of the DMD gene and the significance of its various products, we have searched for genes encoding dystrophin-like proteins in sea urchin and in Drosophila. We previously reported on the characterization of a sea urchin gene encoding a protein which is an evolutionary homologue of Dp116, one of the small products of the mammalian DMD gene, and on the partial sequencing of a large product of the same gene. Here we describe the full-length product which shows strong structural similarity and sequence identity to human dystrophin and utrophin. We also describe a Drosophila gene closely related to the human dystrophin gene. Like the human gene, the Drosophila gene encodes at least three isoforms of full length dystrophin-like proteins (dmDLP1, dmDLP2 and dmDLP3,), regulated by different promoters located at the 5' end of the gene, and a smaller product regulated by an internal promoter (dmDp186). As in mammals, dmDp186 and the dmDLPs share the same C-terminal and cysteine-rich domains which are very similar to the corresponding domains in human dystrophin and utrophin. In addition, dmDp186 contains four of the spectrin-like repeats of the dmDLPs and a unique N-terminal region of 512 amino acids encoded by a single exon. The full length products and the small product have distinct patterns of expression. Thus, the complex structure of the dystrophin gene, encoding several large dystrophin-like isoforms and smaller truncated products with different patterns of expression, existed before the divergence between the protostomes and deuterostomes. The conservation of this gene structure in such distantly related organisms, points to important distinct functions of the multiple products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号