首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lignocellulose containing 62% cellulose was prepared from corn residue by dilute acid hydrolysis using 5% H(2)SO(4) at 90 degrees C. The lignocellulose was then treated with a cellulose solvent consisting of a ferric sodium tartrate complex in 1.5N sodium hydroxide at levels ranging from 4:1 to 12:1 (solvent volume: corn residue lignocellulose) or a 1.5N sodium hydroxide solution alone. Subsequent hydrolysis with cellulase enzymes from Trichoderma reesei gave cellulose conversions which were two to three times higher than untreated lignocellulose (30%) and approached 90% conversion after 24 h in the best cases. It was found that increasing cellulase enzyme levels from 3.74 lU/g lignocellulose to 7.71 lU/g lignocellulose increased cellulose conversion by 50% at all pretreatment conditions, while an increase from 7.71 to 10.1 lU/g gave only an additional 5-10% increase. Pretreatment with sodium hydroxide resulted in 5-25% lower conversions than observed for cellulose treated with the solvent, depending on enzyme levels and treatment levels. At high enzyme levels, sodium hydroxide pretreatment is almost as effective in enhancing cellulose conversion after 24 h as is pretreatment using the cellulose solvent.  相似文献   

2.
The use of lignocellulosic raw materials in bioethanol production has been intensively investigated in recent years. However, for efficient conversion to ethanol, many pretreatment steps are required prior to hydrolysis and fermentation. Coffee stands out as the most important agricultural product in Brazil and wastes such as pulp and coffee husk are generated during the wet and dry processing to obtain green grains, respectively. This work focused on the optimization of alkaline pretreatment of coffee pulp with the aim of making its use in the alcoholic fermentation. A central composite rotatable design was used with three independent variables: sodium hydroxide and calcium hydroxide concentrations and alkaline pretreatment time, totaling 17 experiments. After alkaline pretreatment the concentration of cellulose, hemicellulose, and lignin remaining in the material, the subsequent hydrolysis of the cellulose component and its fermentation of substrate were evaluated. The results indicated that pretreatment using 4% (w/v) sodium hydroxide solution, with no calcium hydroxide, and 25 min treatment time gave the best results (69.18% cellulose remaining, 44.15% hemicelluloses remaining, 25.19% lignin remaining, 38.13 g/L of reducing sugars, and 27.02 g/L of glucose) and produced 13.66 g/L of ethanol with a yield of 0.4 g ethanol/g glucose. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:451–462, 2014  相似文献   

3.
The effectiveness of sulfuric acid (H(2)SO(4)), sodium hydroxide (NaOH), hydrogen peroxide (H(2)O(2)), and ozone pretreatments for conversion of cotton stalks to ethanol was investigated. Ground cotton stalks at a solid loading of 10% (w/v) were pretreated with H(2)SO(4), NaOH, and H(2)O(2) at concentrations of 0.5%, 1%, and 2% (w/v). Treatment temperatures of 90 degrees C and 121 degrees C at 15 psi were investigated for residence times of 30, 60, and 90 min. Ozone pretreatment was performed at 4 degrees C with constant sparging of stalks in water. Solids from H(2)SO(4), NaOH, and H(2)O(2) pretreatments (at 2%, 60 min, 121 degrees C/15 psi) showed significant lignin degradation and/or high sugar availability and hence were hydrolyzed by Celluclast 1.5L and Novozym 188 at 50 degrees C. Sulfuric acid pretreatment resulted in the highest xylan reduction (95.23% for 2% acid, 90 min, 121 degrees C/15 psi) but the lowest cellulose to glucose conversion during hydrolysis (23.85%). Sodium hydroxide pretreatment resulted in the highest level of delignification (65.63% for 2% NaOH, 90 min, 121 degrees C/15 psi) and cellulose conversion (60.8%). Hydrogen peroxide pretreatment resulted in significantly lower (p相似文献   

4.
The immobilization of heparinase to tresyl-chloride-activated cellulose hollow fibers for the removal of heparin from the bloodstream was examined. Whole blood can be circulated through cellulose hollow fibers without hemolysis and the tresyl chloride chemistry provides a strong linkage which limits the release of the enzyme from the support. The tresylation and immobilization methods were modified and optimized to improve the heparinase activity retained by cellulose. Pretreatment of the hollow fibers with 0.05/V sodium hydroxide increased the degree of tresylation and the immobilization yield by a factor of five. The use of triethylamine as the organic base in the tresyl chloride activation resulted in threefold greater activity retention by the support than when pyridine was used. Together, sodium hydroxide pretreatment and triethylamine enhanced the activity retained by cellulose to 26.2 +/- 7.0% of that bound to the support. The activity retention was also a function of the technique used for immobilization. The best results were achieved when the enzyme was applied to the activated fibers once every 12 to 24 h for a total of four times. The active enzyme loading on the fibers was 0.3 mg heparin degraded/h cm(2) when 4.5 mug protein/cm(2) was bound to the fibers.  相似文献   

5.
The interaction of microcrystalline cellulose from cotton and aqueous sodium hydroxide was investigated by 13C NMR solid-state spectroscopy as a function of temperature and sodium hydroxide concentration. When the concentration of NaOH was increased, the initial cellulose spectrum was replaced successively by that of Na-cellulose I followed by that of Na-cellulose II. In Na-cellulose I, each carbon atom occurred as a singlet, thus implying that one glucosyl moiety was the independent magnetic residue in the structure of this allomorph. In addition, the occurrence of the C6 near 62 ppm is an indication of a gt conformation for the hydroxymethyl group of Na-cellulose I. In Na-cellulose II, the analysis of the resonances of C1 and C6 points toward a structure based on a cellotriosyl moiety as the independent magnetic residue, in agreement with the established X-ray analysis that has shown that for this allomorph, the fiber repeat was also that of a cellotriosyl residue. For Na-cellulose II, the occurrence of the C6 in the 60 ppm region indicates an overall gg conformation for the hydroxymethyl groups. A comparison of the spectra recorded at 268 K and at room temperature confirms the stronger interaction of NaOH with cellulose when the temperature is lowered. In the Q region, corresponding to NaOH concentrations of around 9% and temperatures below 277 K, most of the sample was dissolved and no specific solid-state 13C NMR spectrum could be recorded, except for that of a small fraction of undissolved cellulose I. The same experiment run on a wood pulp sample leads to a new spectrum, with spectral characteristics different from those of Na-cellulose I and Na-cellulose II. This new spectrum is assigned to the Q phase, which appears to result from topological constraints that are present in whole wood pulp fibers but not in microcrystalline cellulose. A spectrum recorded for samples in the Na-cellulose III conditions resembled that of Na-cellulose II but of lower resolution. Similarly, a spectrum of a sample of Na-cellulose IV was identical to that of hydrated cellulose II. These observations have allowed us to propose a simplified phase diagram of the cellulose/NaOH system in terms of temperature and NaOH concentration. This diagram, which is simpler than the one deduced from X-ray analysis, consists of only four different regions partially overlapping.  相似文献   

6.
《Carbohydrate research》1985,138(1):99-108
A new methylation method involving powdered sodium hydroxide and methyl iodide has been developed for the facile methylation of cell-wall polysaccharides. Commercial cellulose powder, wood cellulose, and unbleached kraft pulp in solution in SO2-diethylamine-methyl sulfoxide could be completely methylated. Suspensions of holocelluloses, prepared from spruce and beech wood-meals and containing <5% of lignin, and cell-wall polysaccharides containing relatively large amounts of uronic acid and isolated from midrib of Nicotiana tabacum (CWM), were almost completely methylated in one step. Some decarboxylation occurred with the latter polymers.  相似文献   

7.
The dissolution kinetics of cellulose in sodium hydroxide in the presence and absence of urea at low temperature was studied. High molecular weight cotton linter with degree of polymerization of 850 was used for dissolution study. The cotton linter was separated from the dissolution slurry at different dissolution times, and the change of the crystal structure of cotton linter was characterized by Powder X-Ray Diffraction. The rate of decrystallization of cellulose was obtained and the activation energy for cellulose decrystallization in sodium hydroxide solution was derived using Eyring equation. The effect of urea additive was discussed.  相似文献   

8.
Pretreatment of wheat straw for fermentation to methane   总被引:2,自引:0,他引:2  
The effects of pretreating wheat straw with gamma-ray irradiation, ammonium hydroxide, and sodium hydroxide on methane yield, fermentation rate constant, and loss of feedstock constituents were evaluated using laboratory-scale batch fermentors. Results showed that methane yield increased as pretreatment alkali concentration increased, with the highest yield being 37% over untreated straw for the pretreatment consisting of sodium hydroxide dosage of 34 g OH(-)/kg volatile solids, at 90 degrees C for 1 h. Gamma-ray irradiation had no significant effect on methane yield. Alkaline pretreatment temperatures above 100 degrees C caused a decrease in methane yield. After more than 100 days of fermentation, all of the hemi-cellulose and more than 80% of the cellulose were degraded. The loss in cellulose and hemicellulose accounted for 100% of the volatile solids lost. No consistent effect of pretreatments on batch fermentation rates was noted. Semicontinuous fermentations of straw-manure mixtures confirmed the relative effectiveness of sodium and ammonium-hydroxide pretreatments.  相似文献   

9.
Bacterial cellulose obtained through fermentation by the Acetobacter xylinum is of superior functional quality in comparison to plant cellulose. Various alkali treatment methods were used to process bio-chemically complex pellicle into a clean cellulose membrane/sheet. The effect of potassium hydroxide, sodium carbonate and potassium carbonate was found to be milder on the final cellulose product in contrast to the widely used sodium hydroxide treatment. These novel treatment methods also caused improvement in the tensile strength of the membranes in comparison to sodium hydroxide. The overall quality of the 0.1 M sodium carbonate- and potassium carbonate-treated cellulose was superior, as the membranes displayed maximum tensile strength and elongation next to the native membrane. The low tensile strength of sodium hydroxide-treated membrane is attributed to its higher swelling characteristics in alkali. Further, the low swelling property of sodium carbonate- and potassium carbonate-treated membranes resulted in their high oxygen transmission rates (low oxygen barrier). Hunter lab colour parameters were determined to assess the effect of different alkali treatments on the colour characteristics of the membranes. Further, based on the high mechanical strength and comparatively low oxygen transmission rates, the processed cellulose membranes may find application as a bio- packaging material for controlled atmosphere packaging, where hydrophilic membranes with high oxygen barrier and water vapour permeation are desirable.  相似文献   

10.
Cotton fiber cellulose is highly crystalline and oriented; when native cellulose (cellulose I) is treated with certain alkali concentrations, intermolecular hydrogen bonds are broken and Na-cellulose I is formed. At higher alkali concentrations Na-cellulose II forms, wherein intermolecular and intramolecular hydrogen bonds are broken, ultimately resulting in cellulose II polymers. Crystallinity changes in cotton fibers were observed and assigned using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and X-ray diffraction (XRD) subsequent to sodium hydroxide treatment and compared with an in situ protein-binding methodology using cellulose-directed carbohydrate-binding modules (CBMs). Crystallinity changes observed using CBM probes for crystalline cellulose (CBM2a, CBM3a) and amorphous cellulose (CBM4-1, CBM17) displayed close agreement with changes in crystallinity observed with ATR-FTIR techniques, but it is notable that crystallinity changes observed with CBMs are observed at lower NaOH concentrations (2.0 mol dm(-3)), indicating these probes may be more sensitive in detecting crystallinity changes than those calculated using FTIR indices. It was observed that the concentration of NaOH at which crystallinity changes occur as analyzed using the CBM labeling techniques are also lower than those observed using X-ray diffraction techniques. Analysis of crystallinity changes in cellulose using CBMs offers a new and advantageous method of qualitative and quantitative assessment of changes to the structure of cellulose that occur with sodium hydroxide treatment.  相似文献   

11.
Three types of cellulase preparations were applied to different types of cellulose and cellulosic materials. The action of these types of cellulase on cellulose powder was increased with the increase of enzyme concentration. Both carboxymethyl cellulose (CMC) and sodium carboxymethyl cellulose (Na-CMC) released high amounts of reducing sugar as affected by cellulase application. Different types of paper pulp were moderately hydrolyzed, while agricultural wastes were slightly hydrolyzed. Vegetable and fruits cellulose were equally hydrolyzed but at low rate. Pretreatment of cellulose or cellulosic materials by grinding or by swelling with phosphoric acid gave rise to increased hydrolysis by the enzyme. Cellobiose was detected chromatographically as an intermediate product of hydrolysis of both cellulose and carboxymethyl cellulose with glucose.  相似文献   

12.
Calcium hydroxide (0.1%) significantly increased the growth of Bacillus amyloliquefaciens B190, inhibited completely the germination of Botrytis elliptica, and decreased the disease severity caused by B. elliptica on lily. Spraying B. amyloliquefaciens B190 mixed with either 0.025% calcium hydroxide, 0.05% sodium carbonate or 0.025% ammonium nitrate decreased the grey mould disease on lily leaves. B. amyloliquefaciens B190 mixed with 0.025% calcium hydroxide and 0.05% sodium carbonate, or mixed with 0.025% calcium hydroxide and 0.025% ammonium nitrate controlled lily grey mould completely. When the concentration of tested adjuvants was below 0.1% (v/v), adhesive adjuvant, i.e. carboxymethyl cellulose and spreader, i.e. Tween 80 were equally effective to assist B. amyloliquefaciens B190 to control lily grey mould. Calcium hydroxide (0.025%) and 0.05% sodium carbonate mixed with 0.1% Tween 80 significantly controlled lily grey mould. B. amyloliquefaciens B190 mixed with 0.025% calcium hydroxide and 0.05% sodium carbonate, and these two chemicals plus or without 0.1% Tween 80 and 0.05% mineral oil (i.e. emulsion and wettable powder, respectively) was consistently able to control grey mould on lily as well as 100 p.p.m. flusilazole in greenhouse and field trials, respectively.  相似文献   

13.
The effects of treating Neepawa wheat straw with anhydrous ammonia (35 kg t?1), sodium hydroxide (50 kg t?1) and pelleting were evaluated in two experiments. The diets consisted of 51% rolled barley, 40% straw, 4% rapeseed meal, 2% tallow, plus minerals and a vitamin supplement. Straw was treated as follows: (1) shredded into 2.0-cm lengths; (2) shredded into 0.64-cm lengths and pelleted; (3) ammoniated and shredded; (4) ammoniated and pelleted; (5) sodium hydroxide and pelleted; (6) ammoniated, sodium hydroxide and pelleted.Apparent digestibility was measured with six steers per treatment. Pelleting had no effect on organic matter (OM) digestibility, but decreased neutral detergent fibre (NDF) and cellulose digestion. Respective increases for OM and NDF digestibility following chemical treatment of the straw were as follows: ammoniation — 15 and 17%; sodium hydroxide — 4 and 13%.The six diets were given to 144 Hereford steers (240 kg) for 92 days in the second experiment. Feed consumption ranged from 8.51 to 10.39 kg day?1 for diets 1 and 4, and body weight gains ranged from 0.83 to 1.26 kg day?1 for diets 1 and 6, respectively. Respective increases for intake, gain and feed efficiency compared to untreated shredded straw were as follows: pelleting — 11, 34 and 17%; ammoniation — 12, 36 and 17%. Sodium hydroxide treatment prior to pelleting improved intake, gain and feed efficiency by 5, 10 and 5%, respectively. There was no evidence of additive effects between ammoniation and either pelleting or alkali treatment, though treatment with sodium hydroxide prior to pelleting did result in the highest gains and feed efficiency.  相似文献   

14.
The pulping of wheat straw with dimethyl formamide was studied in order to investigate the effects of the cooking variables (temperature (190 degrees C, 200 degrees C, and 210 degrees C) and time (120 min, 150 min, and 180 min) and organic solvent ratio (30%, 50%, and 70%) dimethyl formamide (DMF+water) value) on the degradation of cellulose and degree of polymerization (DP) of organosolv pulp. The SCAN viscosity was applied to estimating the extent of cellulose degradation produced by cooking condition and then, it was compared with Kraft pulp at equal Kappa number. Response of pulp and handsheets properties to the process variables were analyzed using statistical software (MINITAB 14). The process variables (cooking temperature and cooking time) must be set at low variables with high DMF ratio in order to ensure a high yield and high SCAN viscosity. Also, pulps with high mechanical properties can be acceptably obtained at 210 degrees C for 150 min with 50% DMF. Generally, the cooking temperature was a significant factor while the cooking time and DMF ratio had a smaller role. By the comparison of Kraft and organosolv pulp, it can be resulted that DMF basically had improvement role on reducing of cellulose degradation by reason of high SCAN viscosity of organosolv pulp than Kraft pulp under equal kappa number and, scanning electron microscopy (SEM) of obtained pulp. Consequently, the protective action of organic solvent on non-cellulosic polysaccharides of wheat straw against degradation under Kraft pulping conditions was pointed as a main reason of the fairly high yield of organosolv pulps.  相似文献   

15.
Correlating the effect of pretreatment on the enzymatic hydrolysis of straw   总被引:4,自引:0,他引:4  
Avicell, Alkali-treated straw cellulose (ATSC), and wheat straw were ball-milled to reduce crystallinity; wheat straw was delignified by hot (120 degrees C) sodium hydroxide solutions of various concentrations. The physically and chemically pretreated cellulosic materials were hydrolyzed by the cellulases of Fusarium oxysporum strain F3. Enzymic hydrolysis data were fitted by the hyperbolic correlation of Holtzapple, which involves two kinetic parameters, the maximum conversion (X(max)), and the enzymic hydrolysis time corresponding to 50% of X(max) (t(1/2)). An empirical correlation between X(max) and cellulose crystallinity, lignin content, and degree of delignification has been found under our experimental conditions. Complete cellulose hydrolysis is shown to be possible at less than 60% crystallinity indices or less than 10% lignin content.  相似文献   

16.
The influence of temperature in the hydrothermal treatment of sunflower stalks on the composition of the liquid fraction obtained was examined. The remaining solid fraction was subjected to ethanol pulping in order to obtain pulp that was used to produce paper sheets. The pulp was characterized in terms of yield, kappa index, viscosity, and cellulose, hemicellulose and lignin contents; and the paper sheets in terms of breaking length, stretch, burst index and tear index. Hydrothermal treatment of the raw material at 190 degrees C provided a liquid phase with maximal hemicellulose-derived oligomers and monosaccharide (glucose, xylose and arabinose) contents (26.9 and 4.2 g/L, respectively). Pulping the solid fraction obtained by hydrothermal treatment at 180 degrees C, with 70% ethanol at a liquid/solid ratio of 8:1 at 170 degrees C for 120 min provided pulp with properties on a par with those of soda pulp from the sunflower stalks, namely: 36.3% yield, 69.1% cellulose, 12.6% hemicellulose, 18.2% lignin and 551 ml/g viscosity. Also, paper sheets obtained from the ethanol pulp were similar in breaking length (3.8 km), stretch (1.23%), burst index (1.15 kN/g) and tear index (2.04 m Nm(2)/g) to those provided by soda pulp.  相似文献   

17.
In this study, we carried out sodium hydroxide and sonication pretreatments of rapeseed straw (Brassica napus) to obtain monosugar suitable for production of biofuels. To optimize the pretreatment conditions, we applied a statistical response-surface methodology. The optimal pretreatment conditions using sodium hydroxide under sonication irradiation were determined to be 75.0 °C, 7.0 % sodium hydroxide, and 6.8 h. For these conditions, we predicted 97.3 % enzymatic digestibility. In repeated experiments to validate the predicted value, 98.9 ± 0.3 % enzymatic digestibility was obtained, which was well within the range of the predicted model. Moreover, sonication irradiation was found to have a good effect on pretreatment in the lower temperature range and at all concentrations of sodium hydroxide. According to scanning electron microscopy images, the surface area and pore size of the pretreated rapeseed straw were modified by the sodium hydroxide pretreatment under sonication irradiation.  相似文献   

18.
Rice straw was used as an alternative raw material to obtain cellulosics pulps. Pulping was done by using classics reagents as soda (with anthraquinone and parabenzoquinone as aditives), potassium hydroxide and Kraft process. The holocellulose, alpha-cellulose and lignin contents of rice straw (viz. 60.7, 41.2 and 21.9 wt%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using soda, soda and anthraquinone at 1 wt%, soda and parabenzoquinone at 1 wt%, potassium hydroxide and sodium sulphate (Kraft process) under two different sets of operating conditions, namely: (a) a 10 wt% reagent concentration, 170 degrees C and 60 min; and (b) 15 wt% reagent, 180 degrees C and 90 min. The solid/liquid ratio was 6 in both cases. Paper sheets made from pulp extracted by cooking with soda (15 wt%) and AQ (1 wt%) at 180 degrees C and 90 min pulp exhibit the best drainage index, breaking length, stretch and burst index (viz. 23 degrees SR, 3494 m, 3.34% and 2.51 kN/g, respectively).  相似文献   

19.
An arabinoxylan mixture was extracted with saturated barium hydroxide from a water unextractable residue of rye bran. The mixture was fractionated on an anion exchange column which was eluted with water, 0.0025 M sodium borate, 0.025 M sodium borate and 0.4 M sodium hydroxide. It was possible to fractionate the arabinoxylan mixture into fractions with different structural features. The fractionation was repeated with prior protease treatment of the arabinoxylan mixture, but most of the arabinoxylan did not bind to the column by any mechanism that the protease treatment affected, As the largest fraction was still eluted with 0.4 M sodium hydroxide. Protease treatment affected the proportion of disubstituted xylose residues (dXyl) in the water, 0.0025 M sodium borate and 0.025 M sodium borate fractions, indicating that protein associated with arabinoxylans with a high dXyl content is more liable to the protease treatment or that protein is mainly associated with these structures. This study gives indications that protein is involved in the separation mechanism of rye arabinoxylan on a DEAE–cellulose column.  相似文献   

20.
The title compounds were prepared in ~90% overall yield by treatment of the appropriate aldodisaccharide (maltose or cellobiose) with boric acid and triethylamine in dilute, aqueous (pH 11, 70°) solution. When sodium hydroxide was substituted for triethylamine, the yields were unaltered, but reaction rates were increased. In addition, in the sodium hydroxide system, reactions at higher concentrations of sugar (up to 40% w/v) could be performed with only slight decreases in overall yields. New methods were developed for the high-performance liquid-chromatographic analysis (Zorbax-NH2 column, modified with Column Life Extension Agent) of the sugars involved in these isomerizations. Multigram quantities of pure ketodisaccharides were prepared with a simple semi-preparative l.c. system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号