首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Low stringency screening of a human P1 artificial chromosome library using a human hair keratin-associated protein (hKAP1.1A) gene probe resulted in the isolation of six P1 artificial chromosome clones. End sequencing and EMBO/GenBank(TM) data base analysis showed these clones to be contained in four previously sequenced human bacterial artificial chromosome clones present on chromosome 17q12-21 and arrayed into two large contigs of 290 and 225 kilobase pairs (kb) in size. A fifth, partially sequenced human bacterial artificial chromosome clone data base sequence overlapped and closed both of these contigs. One end of this 600-kb cluster harbored six gene loci for previously described human type I hair keratin genes. The other end of this cluster contained the human type I cytokeratin K20 and K12 gene loci. The center of the cluster, starting 35 kb downstream of the hHa3-I hair keratin gene, contained 37 genes for high/ultrahigh sulfur hair keratin-associated proteins (KAPs), which could be divided into a total of 7 KAP multigene families based on amino acid homology comparisons with previously identified sheep, mouse, and rabbit KAPs. To date, 26 human KAP cDNA clones have been isolated through screening of an arrayed human scalp cDNA library by means of specific 3'-noncoding region polymerase chain reaction probes derived from the identified KAP gene sequences. This screening also yielded four additional cDNA sequences whose genes were not present on this gene cluster but belonged to specific KAP gene families present on this contig. Hair follicle in situ hybridization data for single members of five different KAP multigene families all showed localization of the respective mRNAs to the upper cortex of the hair shaft.  相似文献   

2.
L A Whitbread  K Gregg  G E Rogers 《Gene》1991,101(2):223-229
A cDNA library was constructed from embryonic chick claw mRNA and a claw keratin (cKer)-encoding clone was isolated and sequenced. Subsequently, a genomic clone, containing four cKer-encoding genes (cKer) was isolated and one of the genes (cKer1) was completely sequenced. The cKerl gene appears to be differentially expressed in the keratinizing tissue appendages of the embryonic chick, being abundantly expressed in the claw and at a low level in feather tissue. Comparison of the deduced amino acid (aa) sequence of the cKer to those of feather (fKer) and scale keratins (sKer) showed that the regions conserved between fKer and sKer are also found in the cKer. The glycine-rich as repeat region characteristic of sKer is also present in a shortened form in the cKer sequence. Like the fKer genes (fKer) and the feather histidine-rich protein-encoding gene (HRP), the cKer1 gene also contains one intron which interrupts the 5'-noncoding region at an equivalent position to that found in the fKer and HRP genes. Genomic Southern analysis using the cKer cDNA as a probe indicated the presence of several related genes in the chick genome.  相似文献   

3.
Both cDNA and genomic clones of the T cell receptor (TCR) alpha- and beta-chain genes of the alloreactive cytotoxic T lymphocyte (CTL) clone F3 were examined. Two distinct rearrangement events, one functional and one non-functional, were found for both the alpha and beta loci. Thus only a single functional TCR alpha beta heterodimer could be defined, consistent with allelic exclusion in the TCR genes. The V alpha gene employed by F3 is part of a six-member V alpha subfamily. Genomic clones containing each member of this subfamily were isolated and the V alpha nucleotide sequences determined. Five of these six genes are functional; these genes differ from each other by 7-14% at the amino acid level. A single dominant hypervariable region was defined within this subfamily, in contrast to the pattern of variability seen between V alpha genes in general.  相似文献   

4.
5.
C Magoulas  D A Hickey 《Génome》1992,35(1):133-139
Several cDNA and genomic clones were isolated from Drosophila melanogaster gene libraries by hybridization with a region of a mammalian gene that contains a simple repetitive sequence of six GCN repeats. One of the cDNA clones, E6, was completely sequenced and it was shown that it contains a region of 16 GCN repeats; these repeats encode a polyalanine stretch within a long open reading frame. The sequencing of three different genomic clones (A, B, and D) revealed that all the isolated Drosophila clones are similar to one another in a short region containing variable numbers of the GCN repeat. The genomic clone B was found to be the genomic counterpart of the cDNA clone E6. The other genomic clones, A and D, also hybridize with Drosophila cDNA clones at high stringency. These results indicate that the short GCN repetitive sequences, which we have named ala, are found within transcribed regions of the Drosophila genome. These Drosophila genes containing the ala repeat do not show significant sequence similarity to any presently known gene; we have named these novel genes ala-A, ala-B, and ala-D. The cDNA clone from gene ala-B was named ala-E6.  相似文献   

6.
The conversion of the larval to adult epidermis during metamorphosis of tadpoles of bullfrog, Rana catesbeiana, was investigated utilizing newly cloned Rana keratin cDNAs as probes. Rana larval keratin (RLK) cDNA (rlk) was cloned using highly specific antisera against Xenopus larval keratin (XLK). Tail skin proteins of bullfrog tadpoles were separated by 2-dimensional gel electrophoresis and subjected to Western blot analysis with anti-XLK antisera. The Rana antigen detected by this method was sequenced and identified as a type II keratin. We cloned rlk from tadpole skin by PCR utilizing primers designed from these peptide sequences of RLK. RLK predicted by nucleotide sequences of rlk was a 549 amino acid -long type II keratin. Subtractive cloning between the body and the tail skin of bullfrog tadpole yielded a cDNA (rak) of Rana adult keratin (RAK). RAK was a 433 amino acid-long type I keratin. We also cloned a Rana keratin 8 (RK8) cDNA (rk8) from bullfrog tadpole epidermis. RK8 was 502 amino acid-long and homologous to cytokeratin 8. Northern blot analyses and in situ hybridization experiments showed that rlk was actively expressed through prometamorphosis in larva-specific epidermal cells called skein cells and became completely inactive at the climax stage of metamorphosis and in the adult skin. RAK mRNA was expressed in basal cells of the tadpole epidermis and germinative cells in the adult epidermis. The expression of rlk and rak was down- and up-regulated by thyroid hormone (TH), respectively. In contrast, there was no change in the expression of RK8 during spontaneous and TH-induced metamorphosis. RK8 mRNA was exclusively expressed in apical cells of the larval epidermis. These patterns of keratin gene expression indicated that the expression of keratin genes is differently regulated by TH depending on the type of larval epidermal cells. The present study demonstrated the usefulness of these genes for the study of molecular mechanism of postembryonic epidermal development and differentiation.  相似文献   

7.
We have isolated cDNA clones derived from three tadpole alpha-globin mRNAs of Xenopus laevis. The entire nucleotide sequence of the three mRNAs has been determined from the cDNA clones and is presented together with the deduced amino acid sequence of the encoded polypeptides. Two of the three polypeptide sequences are 96% homologous whilst the third sequence is highly diverged, with only a 72% homology. The three tadpole alpha-globin genes are all similarly diverged from the two X. laevis adult alpha-globin genes with which they display approximately 50% homology. Analysis of several independent clones from each class of tadpole alpha-globin sequence reveals a very high degree of coding region polymorphism for each of the three corresponding genes. Using the cloned DNA sequences as hybridisation probes, we have analysed the expression of the corresponding genes during larval development. We show that all three genes are activated simultaneously early in development and that thereafter all three are expressed at an approximately equivalent level. A fourth tadpole alpha-globin mRNA sequence, for which we do not have a cDNA clone, accumulates co-ordinately with the three major mRNA sequences but to a much lower concentration. This pattern of gene expression differs significantly from that of the tadpole beta-globin genes of X. laevis, despite the two classes of genes being closely linked in the genome.  相似文献   

8.
The expression of both epidermal and nonepidermal keratins has been detected in the cement gland of Xenopus laevis by antibody staining. Northern blot and in situ hybridizations with gene-specific probes indicated the expression of the nonepidermal keratin, XK endo B, and the embryonic epidermal keratin, XK70, in the cement gland. Furthermore, since explanted animal pole cells can be induced to differentiate into cement gland cells in vitro by incubation in NH4Cl, we have demonstrated the in vitro induction of XK endo B, maintenance of XK70, and repression of another embryonic epidermal keratin, XK81. This is the first report of keratin gene expression in the cement gland.  相似文献   

9.
The keratins 8 and 18 of simple epithelia differ from stratified epithelial keratins in tissue expression and regulation. To examine the specific properties of human keratin 8, we cloned and sequenced the cDNA from a placental mRNA expression library and defined the optimum state of such clones for expression in bacterial plasmid vectors. Using the polymerase chain reaction we identified and sequenced three introns and located the single active gene for keratin 8, out of a background of 9 to 24 pseudogenes, on chromosome 12. This chromosome contains several genes for type II keratins and also the gene for keratin 18, the type I keratin that is coexpressed with keratin 8. This location of both members of a keratin pair on a single chromosome is thus far unique among the keratin genes; it is consistent with the hypothesis that keratins 8 and 18 may be closer to an ancestral keratin gene than the keratins of more highly differentiated epithelia.  相似文献   

10.
Differential display polymerase chain reaction (DD-PCR) is a powerful technique for comparing gene expression between cell types, or between stages of development or differentiation. Differentially expressed genes may be cloned and analysed further. Here we extend the use of DD-PCR to analyse differences in gene expression between two complex epithelia: that of the small intestine and of the large intestine. The aim of this study was to identify genes expressed preferentially in Paneth cells. Paneth cells are secretory epithelial cells putatively involved in host defense and regulation of crypt cell proliferation and are found at the base of the small intestinal crypts adjacent to the stem cell zone. Of 34 clones that were analysed, partial sequencing identified two clones related to known Paneth cell products: a homologue of secretory phospholipase A2 (clone B1) and a homologue of a neutrophil defensin (clone C5). B1 was strongly expressed in Paneth cells, as demonstrated by in-situ hybridization. B1 was also expressed at a lower level in the large intestinal epithelium. A full length B1 cDNA clone was isolated and sequenced, and shown to be highly homologous to type II secretory phospholipase A2 genes, and almost identical to the enhancing factor gene and the putative gene for the MOM-1 locus. B1 expression is limited to the intestinal tract, and we propose that it be designated intestinal phospholipase A2, or i -PLA2. The method we describe is well suited to the rapid identification of genes expressed exclusively or predominantly in Paneth cells.  相似文献   

11.
12.
13.
Four different genomic clones which contain the genes coding for epidermal keratins Ia (mol. wt. approximately 68 000), Ib (68 000), III (60 000) and VIb (54 500) have been selected using cDNA probes and identified by hybrid-selection translation. The genes vary considerably in length, primarily due to differences in intron sizes: keratin Ia, 9.3 kb (approximately 2.55 kb total exons); keratin Ib, 6.0 kb (2.25 kb exons); keratin III, 6.0 kb (2.2 kb exons); keratin VIb, 4.4 kb (1.85 kb exons). The genes for all three representatives of the basic (type II) cytokeratin subfamily, i.e., keratins Ia, Ib and III, contain eight introns of variable sizes (0.1-1.8 kb) and their exon patterns are very similar. The gene coding for keratin VIb, a representative of the acidic (type I) subfamily, contains seven introns, and the size pattern of its five innermost exons closely resembles that of the genes of the type II keratins. Most of the introns are located in regions coding for the alpha-helical cores of these proteins. Mapping of the intron positions by the S1 nuclease technique and sequencing of some exon-intron boundaries has revealed that some of the introns of all four keratin genes have similar positions to each other and to those of the hamster vimentin gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A new cDNA and two genomic genes encoding the rice storage protein glutelin were isolated and sequenced. The nucleotide sequence of one gene (GluA-3) was completely identical with that of the new cDNA identified here, and the other (GluA-4) was a pseudogene. These glutelin genes were closely related to each other, and belonged to the subfamily A containing the type I (GluA-1) and II (GluA-2) glutelin genes. The Northern blot analysis, using synthetic oligonucleotide specific to the GluA-3 gene as a probe, showed that this gene was expressed earlier than other glutelin genes during seed maturation.  相似文献   

15.
We recently described a method, called the signal sequence trap (SST) method, to clone cDNAs of secreted proteins and/or type I transmembrane proteins containing N-terminal signal sequences by using an epitope-tagging expression plasmid vector. In this paper we describe the summary of a large-scale screening of approximately 5900 clones of an SST cDNA library constructed from mouse bone marrow stromal cell line ST-2 cells. Of 26 positive clones obtained and sequenced, 11 clones appeared to contain authentic signal sequences. Five of the clones corresponded to the 5′ ends of the cDNA of known genes containing N-terminal signal sequences. The full-length cDNA clones of the 6 other unknown clones were isolated and sequenced. One clone, termed SDF3, encoded a mouse counterpart of human pigment epithelium-derived factor. Another clone, termed SDR1, had considerable homology with basigin, a member of the immunoglobulin superfamily. A third clone, termed SDF5, had partial homology with aDrosophilatissue polarity genefrizzled(fz) and its rat homologues,fz-1andfz-2.The other three clones had no significant homology with sequences in the databases. These results indicate that the SST method is effective and useful for the isolation of secreted and membrane proteins without knowledge of their functions.  相似文献   

16.
A gene structure of testosterone 6 beta-hydroxylase (P450IIIA)   总被引:3,自引:0,他引:3  
Genomic clones of a rat testosterone 6 beta-hydroxylase have been isolated and characterized as the first gene (P450/6 beta A) among P450IIIA subfamily. This gene spans about 25Kb and consists of 13 exons, which is the largest number of exons among cytochrome P-450 genes reported previously. The nucleotide sequence of the exon region showed high similarity to those of P450PCN2 and P450PCN1 cDNA (Gonzalez, F.J. et al. (1987) Mol. Cell. Biol. 2969-2974), but several replacements and deletions of nucleotide were found between the P450/6 beta A gene and both cDNAs, indicating the existence of multiple P450IIIA genes in rats.  相似文献   

17.
18.
A genomic clone was isolated from the tobacco hornworm, Manduca sexta, by virtue of its similarity to a Drosophila larval cuticle gene. RNA analysis shows that this clone, B311, is expressed at times appropriate for a larval cuticle gene. Hybrid-selection experiments using B311 DNA show that it encodes a 14 x 10(3) Mr protein, LCP-14, which is precipitated by an antiserum to Manduca larval cuticle. We have sequenced both genomic and cDNA clones for the LCP-14 gene. A conceptual translation of the cDNA sequence shows that the LCP-14 protein is similar not only to another Manduca cuticle protein, but also to Drosophila, Sarcophaga and Hyalophora cecropia cuticle proteins. Since these proteins are found in flexible cuticle and have similar sequences, we conclude they are encoded by homologous genes.  相似文献   

19.
Xenopus larval keratin (XLK) was isolated by gel electrophoresis of proteins of tadpole skin. Screening of an expression cDNA library of tail tissues by specific polyclonal antibodies against XLK produced XLK cDNA (xlk). Its complete nucleotide and predicted amino acid sequences revealed that XLK was a new member of type II keratin. Screening of a cDNA library of adult Xenopus skin using an oligonucleotide probe which had been designed from well-conserved N-terminal amino acid sequences of the rod domain of type I keratin produced two cDNAs, xak-a and xak-b, which were found to be new members of type I keratin gene. Northern blot analysis showed that xlk was expressed exclusively in the larval skin whereas xak-a and xak-b were expressed exclusively in the adult skin. Their expression level was regulated in a region- and metamorphic stage- dependent manner during larval skin development. mRNA in situ hybridization experiments identified the cells that expressed xlk, and xak-a and xak-b as larva- specific epidermal cells (skein cells and basal cells), and adult suprabasal epidermal cells, respectively. These three genes were found to be late responsive to thyroid hormone. Phylogenetic relationships of these keratins with known ones are discussed.  相似文献   

20.
A cDNA clone (glx-2c) encoding glyoxal oxidase (GLOX) was isolated from a Phanerochaete chrysosporium lambda gt11 library, and its nucleotide sequence was shown to be distinct from that of the previously described clone glx-1c (P. J. Kersten and D. Cullen, Proc. Natl. Acad. Sci. USA 90:7411-7413, 1993). Genomic clones corresponding to both cDNAs were also isolated and sequenced. overall nucleotide sequence identity was 98%, and the predicted proteins differed by a single residue: Lys-308<==>Thr-308. Analyses of parental dikaryotic strain BKM-F-1767 and homokaryotic progeny firmly established allelism for these structural variants. Southern blots of pulsed-field gels localized the GLOX gene (glx) to a dimorphic chromosome separate from the peroxidase and cellobiohydrolase genes of P. chrysosporium. Controlled expression of active GLOX was obtained from Aspergillus nidulans transformants when glx-1c was fused to the promoter and secretion signal of the A. niger glucoamylase gene. The GLOX isozyme corresponding to glx-2c was also efficiently secreted by A. nidulans following site-specific mutagenesis of the expression vector at codon 308 of glx-1c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号