首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two acyl-CoA carboxylases from Streptomyces coelicolor have been successfully reconstituted from their purified components. Both complexes shared the same biotinylated alpha subunit, AccA2. The beta and the epsilon subunits were specific from each of the complexes; thus, for the propionyl-CoA carboxylase complex the beta and epsilon components are PccB and PccE, whereas for the acetyl-CoA carboxylase complex the components are AccB and AccE. The two complexes showed very low activity in the absence of the corresponding epsilon subunits; addition of PccE or AccE dramatically increased the specific activity of the enzymes. The kinetic properties of the two acyl-CoA carboxylases showed a clear difference in their substrate specificity. The acetyl-CoA carboxylase was able to carboxylate acetyl-, propionyl-, or butyryl-CoA with approximately the same specificity. The propionyl-CoA carboxylase could not recognize acetyl-CoA as a substrate, whereas the specificity constant for propionyl-CoA was 2-fold higher than for butyryl-CoA. For both enzymes the epsilon subunits were found to specifically interact with their carboxyltransferase component forming a beta-epsilon subcomplex; this appears to facilitate the further interaction of these subunits with the alpha component. The epsilon subunit has been found genetically linked to several carboxyltransferases of different Streptomyces species; we propose that this subunit reflects a distinctive characteristic of a new group of acyl-CoA carboxylases.  相似文献   

2.
We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar to biotin carboxylase subunits of acetyl-CoA and propionyl-CoA carboxylases and of pyruvate carboxylase. The putative motifs for ATP binding, CO(2) fixation, and biotin binding were found in AccA. The accB gene was located upstream of the accA gene, and they formed a two-gene operon. The protein (AccB) encoded by the accB gene showed high degrees of sequence similarity with carboxyltransferase subunits of acetyl-CoA and propionyl-CoA carboxylases and of methylmalonyl-CoA decarboxylase. Carboxybiotin-binding and acyl-CoA-binding domains, which are conserved in several carboxyltransferase subunits of acyl-CoA carboxylases, were found in AccB. An accA disruption mutant showed a reduced growth rate and reduced acetyl-CoA carboxylase activity compared with the wild-type strain. Western blot analysis indicated that the product of the accA gene was a biotinylated protein that was expressed during the exponential growth phase. Based on these results, we propose that this M. xanthus acetyl-CoA carboxylase consists of two subunits, which are encoded by the accB and accA genes, and occupies a position between prokaryotic and eukaryotic acetyl-CoA carboxylases in terms of evolution.  相似文献   

3.
Acetyl-CoA carboxylase catalyzes the first committed step in the biosynthesis of long-chain fatty acids. The Escherichia coli form of the enzyme consists of a biotin carboxylase activity, a biotin carboxyl carrier protein, and a carboxyltransferase activity. The C-terminal 87 amino acids of the biotin carboxyl carrier protein (BCCP87) form a domain that can be independently expressed, biotinylated, and purified (Chapman-Smith, A., Turner, D. L., Cronan, J. E., Morris, T. W., and Wallace, J. C. (1994) Biochem. J. 302, 881-887). The ability of the biotinylated form of this 87-residue protein (holoBCCP87) to act as a substrate for biotin carboxylase and carboxyltransferase was assessed and compared with the results with free biotin. In the case of biotin carboxylase holoBCCP87 was an excellent substrate with a K(m) of 0.16 +/- 0.05 mM and V(max) of 1000.8 +/- 182.0 min(-1). The V/K or catalytic efficiency of biotin carboxylase with holoBCCP87 as substrate was 8000-fold greater than with biotin as substrate. Stimulation of the ATP synthesis reaction of biotin carboxylase where carbamyl phosphate reacted with ADP by holoBCCP87 was 5-fold greater than with an equivalent amount of biotin. The interaction of holoBCCP87 with carboxyltransferase was characterized in the reverse direction where malonyl-CoA reacted with holoBCCP87 to form acetyl-CoA and carboxyholoBCCP87. The K(m) for holoBCCP87 was 0.45 +/- 0.07 mM while the V(max) was 2031.8 +/- 231.0 min(-1). The V/K or catalytic efficiency of carboxyltransferase with holoBCCP87 as substrate is 2000-fold greater than with biotin as substrate.  相似文献   

4.
We report the molecular cloning and DNA sequence of the gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. The biotin carboxylase gene encodes a protein of 449 residues that is strikingly similar to amino-terminal segments of two biotin-dependent carboxylase proteins, yeast pyruvate carboxylase and the alpha-subunit of rat propionyl-CoA carboxylase. The deduced biotin carboxylase sequence contains a consensus ATP binding site and a cysteine-containing sequence preserved in all sequenced bicarbonate-dependent biotin carboxylases that may play a key catalytic role. The gene encoding the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase is located upstream of the biotin carboxylase gene and the two genes are cotranscribed. As previously reported by others, the BCCP sequence encoded a protein of 16,688 molecular mass. However, this value is much smaller than that (22,500 daltons) obtained by analysis of the protein. Amino-terminal amino acid sequencing of the purified BCCP protein confirmed the deduced amino acid sequence indicating that BCCP is a protein of atypical physical properties. Northern and primer extension analyses demonstrate that BCCP and biotin carboxylase are transcribed as a single mRNA species that contains an unusually long untranslated leader preceding the BCCP gene. We have also determined the mutational alteration in a previously isolated acetyl-CoA carboxylase (fabE) mutant and show the lesion maps within the BCCP gene and results in a BCCP species defective in acceptance of biotin. Translational fusions of the carboxyl-terminal 110 or 84 (but not 76) amino acids of BCCP to beta-galactosidase resulted in biotinated beta-galactosidase molecules and production of one such fusion was shown to result in derepression of the biotin biosynthetic operon.  相似文献   

5.
M L Hector  R R Fall 《Biochemistry》1976,15(16):3465-3472
Pseudomonas citronellolis was shown to contain four different acyl-coenzyme A carboxylases, including acetyl-, propionyl-, 3-methylcrotonyl-, and geranyl-CoA carboxylases, when grown on the appropriate carbon sources. Acetyl-CoA carboxylase activity in crude extracts was stimulated approximately 40-fold by inclusion of 0.4-0.5 M ammonium sulfate in the assay. Unexpectedly high levels of propionyl-CoA carboxylase activity, also stimulated by ammonium sulfate, were found in acetate-grown cells. That these acetyl- and propionyl-CoA carboxylase activities were due to different enzymes was shown by their resolution during purification by a procedure that stabilized acetyl-CoA carboxylase as a complex and separated propionyl-CoA carboxylase into two required protein fractions. Propionate- or valine-grown cells contained a propionyl-CoA carboxylase activity that was strongly inhibited by ammonium sulfate in the assay, and which may represent an inducible form of the enzyme. Geranyl- and 3-methylcrotonyl-CoA carboxylases that catalyze the carboxylation of the 3-methyl groups of homologous acyl-CoA acceptors, were induced by growth on the monoterpenes, citronellic or geranoic acid; only 3-methylcrotonyl-CoA carboxylase was induced by growth on leucine or isovaleric acid. Induction of either carboxylase was associated with the appearance of similar high-molecular-weight, biotin-containing proteins as measured by gel filtration. These two carboxylases are probably distinct enzymes since 3-methyl-crotonyl-CoA carboxylase from isovalerate-grown cells does not carboxylate geranyl-CoA, while geranyl-CoA carboxylase will carboxylate both acyl-CoA homologues. P. citronellolis appears to be a useful system for studying the structural aspects of pairs of homologous acyl-CoA carboxylases.  相似文献   

6.
Acetyl-CoA carboxylase catalyzes the first committed step in the synthesis of long-chain fatty acids. The Escherichia coli form of the enzyme consists of a biotin carboxylase protein, a biotin carboxyl carrier protein, and a carboxyltransferase protein. In this report, the synthesis of a bisubstrate analog inhibitor of carboxyltransferase is described. The inhibitor was synthesized by covalently linking biotin to coenzyme A via an acyl bridge between the sulfur of coenzyme A and the 1'-N of biotin. The steady-state kinetics of carboxyltransferase are characterized in the reverse direction, in which malonyl-CoA reacts with biocytin to form acetyl-CoA and carboxybiocytin. The inhibitor exhibited competitive inhibition versus malonyl-CoA and noncompetitive inhibition versus biocytin, with a slope inhibition constant (K(is)) of 23 +/- 2 microM. The bisubstrate analog has an affinity for carboxyltransferase 350 times higher than biotin. This suggests the inhibitor will be useful in structural studies, as well as aid in the search for chemotherapeutic agents that target acetyl-CoA carboxylase.  相似文献   

7.
One consequence of the dramatic rise of antibiotic-resistant pathogenic bacteria is the need for new targets for antibiotics. Because membrane lipid biogenesis is essential for bacterial growth, enzymes of the fatty acid biosynthetic pathway offer attractive possibilities for the development of new antibiotics. Acetyl-coenzyme A carboxylase (ACC) catalyzes the first committed and regulated step in fatty acid biosynthesis in bacteria and thus is a prime target for development of antibiotics. ACC is a multifunctional enzyme composed of three separate proteins. The biotin carboxylase component catalyzes the ATP-dependent carboxylation of biotin. The biotin carboxyl carrier protein features a biotin molecule covalently attached at Lys122 of the Escherichia coli enzyme. The carboxyltransferase subunit catalyzes the transfer of a carboxyl group from biotin to acetyl-coenzyme A (acetyl-CoA) to form malonyl-CoA. The objective of this study was to develop an assay for high-throughput screening for inhibitors of the carboxyltransferase subunit. The carboxyltransferase reaction was assayed in the reverse direction in which malonyl-CoA reacts with biocytin (an analog of the biotin carboxyl carrier protein) to form acetyl-CoA and carboxybiotin. The production of acetyl-CoA was coupled to citrate synthase, which produced citrate and coenzyme A. The amount of coenzyme A formed was detected using 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent). The assay has been developed for use in both 96- and 384-well microplate formats and was validated using a known bisubstrate analog inhibitor of carboxyltransferase. The spectrophotometric readout in the visible absorbance range used in this assay does not generate the number of false negatives associated with frequently used NAD/NADH assay systems that rely on detection of NADH using UV absorbance.  相似文献   

8.
Human holocarboxylase synthetase (HCS) catalyzes linkage of the vitamin biotin to the biotin carboxyl carrier protein (BCCP) domain of five biotin-dependent carboxylases. In the two-step reaction, the activated intermediate, bio-5'-AMP, is first synthesized from biotin and ATP, followed by covalent linkage of the biotin moiety to a specific lysine residue of each carboxylase BCCP domain. Selectivity in HCS-catalyzed biotinylation to the carboxylases was investigated in single turnover stopped flow and quench flow measurements of biotin transfer to the minimal biotin acceptor BCCP fragments of the carboxylases. The results demonstrate that biotinylation of the BCCP fragments of the mitochondrial carboxylases propionyl-CoA carboxylase, pyruvate carboxylase, and methylcrotonoyl-CoA carboxylase is fast and limited by the bimolecular association rate of the enzyme with substrate. By contrast, biotinylation of the acetyl-CoA carboxylase 1 and 2 (ACC1 and ACC2) fragments, both of which are accessible to HCS in the cytoplasm, is slow and displays a hyperbolic dependence on substrate concentration. The correlation between HCS accessibility to biotin acceptor substrates and the kinetics of biotinylation suggests that mitochondrial carboxylase sequences evolved to produce fast association rates with HCS in order to ensure biotinylation prior to mitochondrial import. In addition, the results are consistent with a role for HCS specificity in dictating biotin distribution among carboxylases.  相似文献   

9.
T Takai  K Wada  T Tanabe 《FEBS letters》1987,212(1):98-102
Limited proteolysis of chicken liver acetyl-CoA carboxylase by staphylococcal serine proteinase yielded a fragment of 31 kDa which contained the biotinyl active site. This polypeptide was purified by preparative polyacrylamide gel electrophoresis and characterized. The complete amino acid sequence of this polypeptide has been deduced from the nucleotide sequence of cloned DNA complementary to the chicken liver acetyl-CoA carboxylase mRNA. A highly conserved sequence of Met-Lys-Met was found in the biotin-binding site. Appreciable homology was observed among the sequences in close vicinity of the biotin sites of chicken liver acetyl-CoA carboxylase and other biotin-dependent carboxylases including biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase.  相似文献   

10.
Incubation of cultured cells with [3H]biotin leads to the labelling of acetyl-CoA carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase and methylcrotonyl-CoA carboxylase. The biotin-containing subunits of the last two enzymes from rat cell lines are not separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, but adequate separation is achieved with the enzymes from human cells. Since incorporated biotin is only released upon complete protein breakdown, the loss of radioactivity from gel slices coinciding with fluorograph bands was used to quantify degradation rates for each protein. In HE(39)L diploid human fibroblasts, the degradation rate constants are 0.55, 0.40, 0.31 and 0.19 day-1 for acetyl-CoA carboxylase, pyruvate carboxylase, methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase respectively. A similar series of rate constants is found for AG2804 transformed fibroblasts. The degradation rate constants are decreased by 31-67% in the presence of 50 micrograms of leupeptin/ml plus 5 mM-NH4Cl. Although the largest percentage effect was noted with the most stable enzyme, propionyl-CoA carboxylase, the absolute change in rate constant produced by the lysosomotropic inhibitors was similar for the three mitochondrial carboxylases, but greater for the cytosolic enzyme acetyl-CoA carboxylase. The heterogeneity in degradation rate constants for the mitochondrial carboxylases indicates that only part of their catabolism can occur via the autophagy-mediated unit destruction of mitochondria. Calculations showed that the autophagy-linked process had degradation rate constants of 0.084 and 0.102 day-1 respectively in HE(39)L and AG2804 cells. It accounted for two-thirds of the catabolic rate of propionyl-CoA carboxylase and a lesser proportion for the other enzymes.  相似文献   

11.
Acetyl-CoA carboxylase catalyzes the committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multifunctional enzyme consisting of three separate proteins: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component, which catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source, has a homologous functionally identical subunit in the mammalian biotin-dependent enzymes propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. In humans, mutations in either of these enzymes result in the metabolic deficiency propionic acidemia or methylcrotonylglycinuria. The lack of a system for structure-function studies of these two biotin-dependent carboxylases has prevented a detailed analysis of the disease-causing mutations. However, structural data are available for E. coli biotin carboxylase as is a system for its overexpression and purification. Thus, we have constructed three site-directed mutants of biotin carboxylase that are homologous to three missense mutations found in propionic acidemia or methylcrotonylglycinuria patients. The mutants M169K, R338Q, and R338S of E. coli biotin carboxylase were selected for study to mimic the disease-causing mutations M204K and R374Q of propionyl-CoA carboxylase and R385S of 3-methylcrotonyl-CoA carboxylase. These three mutants were subjected to a rigorous kinetic analysis to determine the function of the residues in the catalytic mechanism of biotin carboxylase as well as to establish a molecular basis for the two diseases. The results of the kinetic studies have revealed the first evidence for negative cooperativity with respect to bicarbonate and suggest that Arg-338 serves to orient the carboxyphosphate intermediate for optimal carboxylation of biotin.  相似文献   

12.
We identified the first prokaryotic urea carboxylase (UCA) from a member of the alpha subclass of the class Proteobacteria, Oleomonas sagaranensis. This enzyme (O. sagaranensis Uca) was composed of 1,171 amino acids, and its N-terminal region resembled the biotin carboxylase domains of various biotin-dependent carboxylases. The C-terminal region of the enzyme harbored the Met-Lys-Met motif found in biotin carboxyl carrier proteins. The primary structure of the enzyme was 45% identical to that of the urea carboxylase domain of urea amidolyase from Saccharomyces cerevisiae. O. sagaranensis Uca did not harbor the allophanate hydrolase domain found in the yeast enzyme, but a separate gene with structural similarity was found to be adjacent to the uca gene. Purified recombinant O. sagaranensis Uca displayed ATP-dependent carboxylase activity towards urea (V(max) = 21.2 micro mol mg(-1) min(-1)) but not towards acetyl coenzyme A (acetyl-CoA) and propionyl-CoA, indicating that the gene encoded a bona fide UCA and not an acetyl-CoA or propionyl-CoA carboxylase. The enzyme also exhibited high levels of activity towards acetamide and formamide. Kinetic parameters of the enzyme reaction were determined with ATP, urea, acetamide, and formamide. O. sagaranensis could grow on urea, acetamide, and formamide as sole nitrogen sources; moreover, ATP-dependent urea-degrading activity was found in cells grown with urea but not in cells grown with ammonia. The results suggest that the UCA of this organism may be involved in the assimilation of these compounds as nitrogen sources. Furthermore, orthologues of the O. sagaranensis uca gene were found to be widely distributed among BACTERIA: This implies that there are two systems of urea degradation in Bacteria, a pathway catalyzed by the previously described ureases and the UCA-allophanate hydrolase pathway identified in this study.  相似文献   

13.
Acetyl-CoA carboxylase regulates the rate of fatty acid synthesis. This enzyme in plants is localized in plastids and is believed to be composed of biotin carboxyl carrier protein, biotin carboxylase, and carboxyltransferase made up of alpha and beta polypeptides, although the enzyme has not been purified yet. Accumulated evidence shows that pea plastidic acetyl-CoA carboxylase is activated by light and the activation is caused by light-dependent reduction of carboxyltransferase, but not of biotin carboxylase, via a redox cascade. To understand the reductive activation of carboxyltransferase at the molecular level here, we obtained the active enzyme composed of decahistidine-tagged (His tag) alpha and beta polypeptides through the expression of the pea plastidic carboxyltransferase gene in Escherichia coli. Gel filtration showed that the molecular size of the recombinant carboxyltransferase is in agreement with that of partially purified carboxyltransferase from pea chloroplasts. The catalytic activity of the recombinant enzyme was similar to that of native carboxyltransferase. These results indicate that the molecular structure and conformation of recombinant carboxyltransferase resemble those of its native counterpart and that native carboxyltransferase is indeed composed of alpha and beta polypeptides. This recombinant enzyme was activated by dithiothreitol, a known reductant of S-S bonds, with a profile similar to that of its native counterpart. The recombinant enzyme was activated by reduced thioredoxin-f, a signal transducer of redox potential in chloroplasts under irradiation. Thus, this enzyme was redox-regulated, like that of the native carboxyltransferase.  相似文献   

14.
15.
Autotrophic Archaea of the family Sulfolobaceae (Crenarchaeota) use a modified 3-hydroxypropionate cycle for carbon dioxide assimilation. In this cycle the ATP-dependent carboxylations of acetyl-CoA and propionyl-CoA to malonyl-CoA and methylmalonyl-CoA, respectively, represent the key CO2 fixation reactions. These reactions were studied in the thermophilic and acidophilic Metallosphaera sedula and are shown to be catalyzed by one single large enzyme, which acts equally well on acetyl-CoA and propionyl-CoA. The carboxylase was purified and characterized and the genes were cloned and sequenced. In contrast to the carboxylase of most other organisms, acetyl-CoA/propionyl-CoA carboxylase from M. sedula is active at 75 degrees C and is isolated as a stabile functional protein complex of 560 +/- 50 kDa. The enzyme consists of two large subunits of 57 kDa each representing biotin carboxylase (alpha) and carboxytransferase (gamma), respectively, and a small 18.6 kDa biotin carrier protein (beta). These subunits probably form an (alpha beta gamma)4 holoenzyme. It has a catalytic number of 28 s-1 at 65 degrees C and at the optimal pH of 7.5. The apparent Km values were 0.06 mm for acetyl-CoA, 0.07 mm for propionyl-CoA, 0.04 mm for ATP and 0.3 mm for bicarbonate. Acetyl-CoA/propionyl-CoA carboxylase is considered the main CO2 fixation enzyme of autotrophic members of Sulfolobaceae and the sequenced genomes of these Archaea contain the respective genes. Due to its stability the archaeal carboxylase may prove an ideal subject for further structural studies.  相似文献   

16.
Biotin-dependent carboxylases require covalently bound biotin for enzymatic activity. The biotin is attached through a lysine residue, which in a number of bacterial, avian, and mammalian carboxylases, is found within the conserved sequence Ala-Met-Lys-Met. We have determined the partial nucleotide sequence of cDNA clones for human propionyl-CoA carboxylase and pyruvate carboxylase. The predicted amino acid sequence of both these proteins contains the conserved tetrapeptide 35 residues from the carboxy terminus. In addition, both proteins contain the tripeptide, Pro-Met-Pro, 26 residues toward the amino terminus from the biotin attachment site. The overall amino acid homology through this region is 43%. Similar findings have been made for the biotin-containing polypeptides of transcarboxylase of Propionibacterium shermanii and acetyl-CoA carboxylase of Escherichia coli (W. L. Maloy, B. U. Bowien, G. K. Zwolinski, K. G. Kumar, and H. G. Wood (1979) J. Biol. Chem. 254, 11615-11622). The implications of this sequence conservation with regard to the function and evolution of biotin-dependent carboxylases is discussed. We propose that the 60 amino acids surrounding the biotin site are bounded by a proline "hinge" and the carboxy terminus has remained conserved as a result of constraints imposed by biotinylation of the enzyme.  相似文献   

17.
18.
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis. In Escherichia coli, the enzyme is composed of three distinct protein components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. The biotin carboxylase component has served for many years as a paradigm for mechanistic studies devoted toward understanding more complicated biotin-dependent carboxylases. The three-dimensional x-ray structure of an unliganded form of E. coli biotin carboxylase was originally solved in 1994 to 2.4-A resolution. This study revealed the architecture of the enzyme and demonstrated that the protein belongs to the ATP-grasp superfamily. Here we describe the three-dimensional structure of the E. coli biotin carboxylase complexed with ATP and determined to 2.5-A resolution. The major conformational change that occurs upon nucleotide binding is a rotation of approximately 45(o) of one domain relative to the other domains thereby closing off the active site pocket. Key residues involved in binding the nucleotide to the protein include Lys-116, His-236, and Glu-201. The backbone amide groups of Gly-165 and Gly-166 participate in hydrogen bonding interactions with the phosphoryl oxygens of the nucleotide. A comparison of this closed form of biotin carboxylase with carbamoyl-phosphate synthetase is presented.  相似文献   

19.
Carboxylase genes of Sulfolobus metallicus   总被引:2,自引:0,他引:2  
Carbon dioxide limitation of Sulfolobus metallicus resulted in increased cellular concentrations of polypeptides that were predicted to be biotin carboxylase and biotin carboxyl-carrier-protein components of a protein complex. These polypeptides were coeluted from a native polyacrylamide gel and were estimated at 19 and 59 kDa after separation by denaturing gel electrophoresis. Their encoding genes were identified, sequenced and shown to code for polypeptides of 18,580 and 58,235 Da with similarities to biotin carboxyl carrier proteins and biotin carboxylases, respectively. The genes overlapped at the second of two stop codons that terminated the carboxylase gene. A third gene occurred on the opposite strand, 293 bp upstream of the biotin carboxylase gene. Its deduced amino acid sequence was similar to those of carboxyl transferase subunits of carboxylase enzymes, in particular to those of the propionyl-CoA carboxylases. It is proposed that the three described genes could encode the key enzyme complex responsible for carbon dioxide fixation during autotrophic growth of the thermoacidophilic archaea. Received: 24 February 1999 / Accepted: 30 July 1999  相似文献   

20.
Acetyl-CoA carboxylase from irradiated cell-suspension cultures of parsley (Petroselinum hortense) has been purified to apparent homogeneity. The procedure included affinity chromatography of the enzyme on avidinmonomer--Sepharose 4B. Molecular weights of about 420000 for the native enzyme and about 220000 for the enzyme subunit were determined respectively by gel filtration or sucrose-density-gradient sedimentation and by electrophoresis in the presence of dodecyl sulfate. The purified enzyme showed an isoelectric point of 5. The enzyme carboxylated the straight-chain acyl-CoA esters of acetate, propionate, and butyrate at decreasing rates in this order. The catalytic efficiency of the carboxylase was highest when ATP existed largely as MgATP2- complex. At the optimum pH of 8 the apparent Km values for the substrates were: acetyl-CoA, 0.15 mmol/1; bicarbonate, 1 mmol/1; MgATP2-, 0.07 mmol/1. The carboxylase was inhibited by greater than 50 mmol/l NaCl, KCl, or Tris/HCl buffer. The putative allosteric activator, citrate, stimulated the enzyme only slightly at concentrations below 2 mmol/l, but strongly inhibited the carboxylase at higher concentrations. The results of these studies demonstrate that several properties of the light-inducible acetyl-CoA carboxylase of parsley cells, an enzyme of the flavonoid pathway, are remarkably similar to those of acetyl-CoA carboxylases from a variety of other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号