首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal mitochondrial translation systems contain two serine tRNAs, corresponding to the codons AGY (Y = U and C) and UCN (N = U, C, A, and G), each possessing an unusual secondary structure; tRNA(GCU)(Ser) (for AGY) lacks the entire D arm, whereas tRNA(UGA)(Ser) (for UCN) has an unusual cloverleaf configuration. We previously demonstrated that a single bovine mitochondrial seryl-tRNA synthetase (mt SerRS) recognizes these topologically distinct isoacceptors having no common sequence or structure. Recombinant mt SerRS clearly footprinted at the TPsiC loop of each isoacceptor, and kinetic studies revealed that mt SerRS specifically recognized the TPsiC loop sequence in each isoacceptor. However, in the case of tRNA(UGA)(Ser), TPsiC loop-D loop interaction was further required for recognition, suggesting that mt SerRS recognizes the two substrates by distinct mechanisms. mt SerRS could slightly but significantly misacylate mitochondrial tRNA(Gln), which has the same TPsiC loop sequence as tRNA(UGA)(Ser), implying that the fidelity of mitochondrial translation is maintained by kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.  相似文献   

2.
3.
4.
The reactivity of phosphates in the Thermus thermophilus tRNA(Ser) (GCU) and tRNA(Leu) (CAG) was studied using the ethylnitrosourea modification. It was shown that phosphates of nucleotides 58-60 (T loop), 20-22 (D loop), and 48 (at the junction of the variable and T stems) were poorly modified in both tRNAs. The most pronounced differences in the reactivity were observed for phosphates at the junctions of the variable stem with T-stem (47q, 49) and anticodon stem (45). This indicates differences in orientations of the long variable arm relative to the backbone in the tRNAs studied.  相似文献   

5.
6.
Transfer RNAs (tRNAs) are grouped into two classes based on the structure of their variable loop. In Escherichia coli, tRNAs from three isoaccepting groups are classified as type II. Leucine tRNAs comprise one such group. We used both in vivo and in vitro approaches to determine the nucleotides that are required for tRNA(Leu) function. In addition, to investigate the role of the tRNA fold, we compared the in vivo and in vitro characteristics of type I tRNA(Leu) variants with their type II counterparts.A minimum of six conserved tRNA(Leu) nucleotides were required to change the amino acid identity and recognition of a type II tRNA(Ser) amber suppressor from a serine to a leucine residue. Five of these nucleotides affect tRNA tertiary structure; the G15-C48 tertiary "Levitt base-pair" in tRNA(Ser) was changed to A15-U48; the number of nucleotides in the alpha and beta regions of the D-loop was changed to achieve the positioning of G18 and G19 that is found in all tRNA(Leu); a base was inserted at position 47n between the base-paired extra stem and the T-stem; in addition the G73 "discriminator" base of tRNA(Ser) was changed to A73. This minimally altered tRNA(Ser) exclusively inserted leucine residues and was an excellent in vitro substrate for LeuRS. In a parallel experiment, nucleotide substitutions were made in a glutamine-inserting type I tRNA (RNA(SerDelta); an amber suppressor in which the tRNA(Ser) type II extra-stem-loop is replaced by a consensus type I loop). This "type I" swap experiment was successful both in vivo and in vitro but required more nucleotide substitutions than did the type II swap. The type I and II swaps revealed differences in the contributions of the tRNA(Leu) acceptor stem base-pairs to tRNA(Leu) function: in the type I, but not the type II fold, leucine specificity was contingent on the presence of the tRNA(Leu) acceptor stem sequence. The type I and II tRNAs used in this study differed only in the sequence and structure of the variable loop. By altering this loop, and thereby possibly introducing subtle changes into the overall tRNA fold, it became possible to detect otherwise cryptic contributions of the acceptor stem sequence to recognition by LeuRS. Possible reasons for this effect are discussed.  相似文献   

7.
Yeast tRNA(Ser) is a member of the class II tRNAs, whose characteristic is the presence of an extended variable loop. This additional structural feature raises questions about the recognition of these class II tRNAs by their cognate synthetase and the possibility of the involvement of the extra arm in the recognition process. A footprinting study of yeast tRNA(Ser) complexed with its cognate synthetase, yeast seryl-tRNA synthetase (an alpha 2 dimer), was undertaken. Chemical (ethylnitrosourea) and enzymatic (nucleases S1 and V1) probes were used in the experiments. A map of the contact points between the tRNA and the synthetase was established and results were analyzed with respect to a three-dimensional model of yeast tRNA(Ser). Regions in close vicinity with the synthetase are clustered on one face of tRNA. The extra arm, which is strongly protected from chemical modifications, appears as an essential part of the contact area. The anticodon triplet and a large part of the anticodon arm are, in contrast, still accessible to the probes when the complex is formed. These results are discussed in the context of the recognition of tRNAs in the aminoacylation reaction.  相似文献   

8.
9.
A large number of cytoplasmic tRNAs are imported into the kinetoplast-mitochondrion of Leishmania by a receptor-mediated process. To identify the sequences recognized by import receptors, mitochondria were incubated with a combinatorial RNA library. Repeated cycles of amplification of the imported sequences (SELEX) resulted in rapid selection of several import aptamers containing sequence motifs present in the anticodon arm, the D arm, the V-T region, and acceptor stem of known tRNAs, confirming or suggesting the presence of import signals in these domains. As predicted, truncated derivatives of tRNA(Ile)(UAU) containing the D arm or the V-T region were imported in vitro. Four aptamers were studied in detail. All were imported in vitro as well as in transiently transfected cells, using the same pathway as tRNA, but their individual import efficiencies were different. Two types of aptamers were discernible: the A arm and D arm homologues (type I), which were efficiently transferred across the inner mitochondrial membrane, and the V-T homologues (type II), which were not. Remarkably, subnanomolar concentrations of type I RNAs stimulated the entry of type II RNAs into the matrix, whereas type II RNAs inhibited inner membrane transfer of type I RNAs. Moreover, tRNA(Tyr)(GUA) and tRNA(Ile)(UAU) interacted with one another as type I and type II, respectively. Such cooperative and antagonistic interactions may allow the use of a limited number of receptors to recognize a large number of tRNAs of variable affinity and enable the maintenance of a properly balanced tRNA pool for mitochondrial translation.  相似文献   

10.
The secondary structures of metazoan mitochondrial (mt) tRNAs(Ser) deviate markedly from the paradigm of the canonical cloverleaf structure; particularly, tRNA(Ser)(GCU) corresponding to the AGY codon (Y=U and C) is highly truncated and intrinsically missing the entire dihydrouridine arm. None of the mt serine isoacceptors possesses the elongated variable arm, which is the universal landmark for recognition by seryl-tRNA synthetase (SerRS). Here, we report the crystal structure of mammalian mt SerRS from Bos taurus in complex with seryl adenylate at an atomic resolution of 1.65 A. Coupling structural information with a tRNA-docking model and the mutagenesis studies, we have unraveled the key elements that establish tRNA binding specificity, differ from all other known bacterial and eukaryotic systems, are the characteristic extensions in both extremities, as well as a few basic residues residing in the amino-terminal helical arm of mt SerRS. Our data further uncover an unprecedented mechanism of a dual-mode recognition employed to discriminate two distinct 'bizarre' mt tRNAs(Ser) by alternative combination of interaction sites.  相似文献   

11.
12.
13.
14.
The phosphorothioate footprinting technique was applied to the investigation of phosphate moieties in tRNA substrates involved in interactions with M1 RNA, the catalytic subunit of Escherichia coli RNase P. In general agreement with previous data, all affected sites were localized in acceptor stem and T arm. But the analyzed examples for class I (Saccharomyces cerevisiae pre-tRNA(Phe) with short variable arm) and class II tRNAs (E. coli pre-tRNA(Tyr) with large variable arm) revealed substantial differences. In the complex with pre-tRNA(Phe), protection was observed at U55, C56, and G57, along the top of the T loop in the tertiary structure, whereas in pre-tRNA(Tyr), the protected positions were G57, A58, and A59, at the bottom of the T loop. These differences suggest that the size of the variable arm affects the spatial arrangement of the T arm, providing a possible explanation for the discrepancy in reports about the D arm requirement in truncated tRNA substrates for eukaryotic RNase P enzymes. Enhanced reactivities were found near the junction of acceptor and T stem (U6, 7, 8 in pre-tRNA(Phe) and G7, U63, U64 in pre-tRNA(Tyr)). This indicates a partial unfolding of the tRNA structure upon complex formation with RNase P RNA.  相似文献   

15.
16.
17.
Initiator methionine tRNA from the cytoplasm of Neurospora crassa has been purified and sequenced. The sequence is: pAGCUGCAUm1GGCGCAGCGGAAGCGCM22GCY*GGGCUCAUt6AACCCGGAGm7GU (or D) - CACUCGAUCGm1AAACGAG*UUGCAGCUACCAOH. Similar to initiator tRNAs from the cytoplasm of other eukaryotes, this tRNA also contains the sequence -AUCG- instead of the usual -TphiCG (or A)- found in loop IV of other tRNAs. The sequence of the N. crassa cytoplasmic initiator tRNA is quite different from that of the corresponding mitochondrial initiator tRNA. Comparison of the sequence of N. crassa cytoplasmic initiator tRNA to those of yeast, wheat germ and vertebrate cytoplasmic initiator tRNA indicates that the sequences of the two fungal tRNAs are no more similar to each other than they are to those of other initiator tRNAs.  相似文献   

18.
Modified nucleosides are prevalent in tRNA. Experimental studies reveal that modifications play an important role in tuning tRNA activity. In this study, molecular dynamics (MD) simulations were used to investigate how modifications alter tRNA structure and dynamics. The X-ray crystal structures of tRNA-Asp, tRNA-Phe, and tRNA-iMet, both with and without modifications, were used as initial structures for 333-ns time-scale MD trajectories with AMBER. For each tRNA molecule, three independent trajectory calculations were performed. Force field parameters were built using the RESP procedure of Cieplak et al. for 17 nonstandard tRNA residues. The global root-mean-square deviations (RMSDs) of atomic positions show that modifications only introduce significant rigidity to tRNA-Phe’s global structure. Interestingly, regional RMSDs of anticodon stem-loop suggest that modified tRNA has more rigid structure compared to the unmodified tRNA in this domain. The anticodon RMSDs of the modified tRNAs, however, are higher than those of corresponding unmodified tRNAs. These findings suggest that rigidity of the anticodon arm is essential for tRNA translocation in the ribosome complex, and, on the other hand, flexibility of anticodon might be critical for anticodon–codon recognition. We also measure the angle between the 3D L-shaped arms of tRNA; backbone atoms of acceptor stem and TψC stem loop are selected to indicate one vector, and backbone atoms of anticodon stem and D stem loop are selected to indicate the other vector. By measuring the angle between two vectors, we find that the initiator tRNA has a narrower range of hinge motion compared to tRNA-Asp and tRNA-Phe, which are elongator tRNA. This suggests that elongator tRNAs, which might require significant flexibility in this hinge to transition from the A–to-P site in the ribosome, have evolved to specifically accommodate this need.  相似文献   

19.
Selenocysteine tRNA [tRNA((Ser)Sec)] is charged with serine by the same seryl-tRNA synthetase (SerRS) as the canonical serine tRNAs. Using site-directed mutagenesis, we have introduced a series of mutations into human tRNA((Ser)Sec) and tRNA(Ser) in order to study the identity elements of tRNA((Ser)Sec) for serylation and the effect of the orientation of the extra arm. Our results show that the long extra arm is one of the major identity elements for both tRNA(Ser) and tRNA((Ser)Sec) and gel retardation assays reveal that it appears to be a prerequisite for binding to the cognate synthetase. The long extra arm functions in an orientation-dependent, but not in a sequence-specific manner. The discriminator base G73 is another important identity element of tRNA((Ser)Sec), whereas the T- and D-arms play a minor role for the serylation efficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号