首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 X 10(-3) mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis we conclude that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. As others have concluded for wild-type strains we find also in the rad2 strain that pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. We conclude that heteroduplex repair is a crucial step in pure mutant clone formation and we examine the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis.  相似文献   

2.
A direct repeat recombination assay between SUP4 heteroalleles detects unrepaired heteroduplex DNA (hDNA) as sectored colonies. The frequency of unrepaired heteroduplex is dependent on the mismatch and is highest in a construct that generates C:C or G:G mispairs and lowest in one that generates T:G or C:A mispairs. In addition, unrepaired hDNA increases for all mismatches tested in pms1 mismatch repair-deficient strains. These results support the notion that hDNA is formed across the SUP4 repeats during the recombination event and is then subject to mismatch repair. The effects of various repair and recombination defective mutations on this assay were examined. Unrepaired heteroduplex increases significantly only in rad52 mutant strains. In addition, direct repeat recombination is reduced 2-fold in rad52 mutant strains, while in rad51, rad54, rad55 and rad57 mutants direct repeat recombination is increased 3-4-fold. Mutations in the excision repair gene, RAD1, do not affect the frequency of direct repeat recombination. However, the level of unrepaired heteroduplex is slightly decreased in rad1 mutant strains. Similar to previous studies, rad1 rad52 double mutants show a synergistic reduction in direct repeat recombination (35-fold). Interestingly, unrepaired heteroduplex is reduced 4-fold in the double mutants. Experiments with shortened repeats suggest that the reduction in unrepaired heteroduplex is due to decreased hDNA tract length in the double mutant strain.  相似文献   

3.
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.  相似文献   

4.
The conditionally-lethal pso4-1 mutant allele of the spliceosomal-associated PRP19 gene allowed us to study this gene’s influence on pre-mRNA processing, DNA repair and sporulation. Phenotypes related to intron-containing genes were correlated to temperature. Splicing reporter systems and RT–PCR showed splicing efficiency in pso4-1 to be inversely correlated to growth temperature. A single amino acid substitution, replacing leucine with serine, was identified within the N-terminal region of the pso4-1 allele and was shown to affect the interacting properties of Pso4-1p. Amongst 24 interacting clones isolated in a two-hybrid screening, seven could be identified as parts of the RAD2, RLF2 and DBR1 genes. RAD2 encodes an endonuclease indispensable for nucleotide excision repair (NER), RLF2 encodes the major subunit of the chromatin assembly factor I, whose deletion results in sensitivity to UVC radiation, while DBR1 encodes the lariat RNA splicing debranching enzyme, which degrades intron lariat structures during splicing. Characterization of mutagen-sensitive phenotypes of rad2Δ, rlf2Δ and pso4-1 single and double mutant strains showed enhanced sensitivity for the rad2Δ pso4-1 and rlf2Δ pso4-1 double mutants, suggesting a functional interference of these proteins in DNA repair processes in Saccharomyces cerevisiae.  相似文献   

5.
The replication of double-stranded plasmids containing a single N-2-acetylaminofluorene (AAF) adduct located in a short, heteroduplex sequence was analyzed in Saccharomyces cerevisiae. The strains used were proficient or deficient for the activity of DNA polymerase ζ (REV3 and rev3Δ, respectively) in a mismatch and nucleotide excision repair-defective background (msh2Δ rad10Δ). The plasmid design enabled the determination of the frequency with which translesion synthesis (TLS) and mechanisms avoiding the adduct by using the undamaged, complementary strand (damage avoidance mechanisms) are invoked to complete replication. To this end, a hybridization technique was implemented to probe plasmid DNA isolated from individual yeast transformants by using short, 32P-end-labeled oligonucleotides specific to each strand of the heteroduplex. In both the REV3 and rev3Δ strains, the two strands of an unmodified heteroduplex plasmid were replicated in ~80% of the transformants, with the remaining 20% having possibly undergone prereplicative MSH2-independent mismatch repair. However, in the presence of the AAF adduct, TLS occurred in only 8% of the REV3 transformants, among which 97% was mostly error free and only 3% resulted in a mutation. All TLS observed in the REV3 strain was abolished in the rev3Δ mutant, providing for the first time in vivo biochemical evidence of a requirement for the Rev3 protein in TLS.  相似文献   

6.
The Schizosaccharomyces pombe mag1 gene encodes a DNA repair enzyme with sequence similarity to the AlkA family of DNA glycosylases, which are essential for the removal of cytotoxic alkylation products, the premutagenic deamination product hypoxanthine and certain cyclic ethenoadducts such as ethenoadenine. In this paper, we have purified the Mag1 protein and characterized its substrate specificity. It appears that the substrate range of Mag1 is limited to the major alkylation products, such as 3-mA, 3-mG and 7-mG, whereas no significant activity was found towards deamination products, ethenoadducts or oxidation products. The efficiency of 3-mA and 3-mG removal was 5–10 times slower for Mag1 than for Escherichia coli AlkA whereas the rate of 7-mG removal was similar to the two enzymes. The relatively low efficiency for the removal of cytotoxic 3-methylpurines is consistent with the moderate sensitivity of the mag1 mutant to methylating agents. Furthermore, we studied the initial steps of Mag1-dependent base excision repair (BER) and genetic interactions with other repair pathways by mutant analysis. The double mutants mag1 nth1, mag1 apn2 and mag1 rad2 displayed increased resistance to methyl methanesulfonate (MMS) compared with the single mutants nth1, apn2 and rad2, respectively, indicating that Mag1 initiates both short-patch (Nth1-dependent) and long-patch (Rad2-dependent) BER of MMS-induced damage. Spontaneous intrachromosomal recombination frequencies increased 3-fold in the mag1 mutant suggesting that Mag1 and recombinational repair (RR) are both involved in repair of alkylated bases. Finally, we show that the deletion of mag1 in the background of rad16, nth1 and rad2 single mutants reduced the total recombination frequencies of all three double mutants, indicating that abasic sites formed as a result of Mag1 removal of spontaneous base lesions are substrates for nucleotide excision repair, long- and short-patch BER and RR.  相似文献   

7.
The two endonucleases, Rad27 (yeast Fen1) and Dna2, jointly participate in the processing of Okazaki fragments in yeasts. Mus81–Mms4 is a structure-specific endonuclease that can resolve stalled replication forks as well as toxic recombination intermediates. In this study, we show that Mus81–Mms4 can suppress dna2 mutational defects by virtue of its functional and physical interaction with Rad27. Mus81–Mms4 stimulated Rad27 activity significantly, accounting for its ability to restore the growth defects caused by the dna2 mutation. Interestingly, Rad27 stimulated the rate of Mus81–Mms4 catalyzed cleavage of various substrates, including regressed replication fork substrates. The ability of Rad27 to stimulate Mus81–Mms4 did not depend on the catalytic activity of Rad27, but required the C-terminal 64 amino acid fragment of Rad27. This indicates that the stimulation was mediated by a specific protein–protein interaction between the two proteins. Our in vitro data indicate that Mus81–Mms4 and Rad27 act together during DNA replication and resolve various structures that can impede normal DNA replication. This conclusion was further strengthened by the fact that rad27 mus81 or rad27 mms4 double mutants were synergistically lethal. We discuss the significance of the interactions between Rad27, Dna2 and Mus81–Mms4 in context of DNA replication.  相似文献   

8.
Sister chromatid exchange (SCE) can occur by several recombination mechanisms, including those directly initiated by double-strand breaks (DSBs), such as gap repair and break-induced replication (BIR), and those initiated when DNA polymerases stall, such as template switching. To elucidate SCE recombination mechanisms, we determined whether spontaneous and DNA damage-associated SCE requires specific genes within the RAD52 and RAD3 epistasis groups in Saccharomyces cerevisiae strains containing two his3 fragments, his35′ and his33::HOcs. SCE frequencies were measured after cells were exposed to UV, X-rays, 4-nitroquinoline 1-oxide (4-NQO) and methyl methanesulfonate (MMS), or when an HO endonuclease-induced DSB was introduced at his33::HOcs. Our data indicate that genes involved in gap repair, such as RAD55, RAD57 and RAD54, are required for DNA damage-associated SCE but not for spontaneous SCE. RAD50 and RAD59, genes required for BIR, are required for X-ray-associated SCE but not for SCE stimulated by HO-induced DSBs. In comparison with wild type, rates of spontaneous SCE are 10-fold lower in rad51 rad1 but not in either rad51 rad50 or rad51 rad59 double mutants. We propose that gap repair mechanisms are important in DNA damage-associated recombination, whereas alternative pathways, including a template switch pathway, play a role in spontaneous SCE.  相似文献   

9.
Drug resistance has become a major problem in the treatment of Candida albicans infections. Genome changes, such as aneuploidy, translocations, loss of heterozygosity, or point mutations, are often observed in clinical isolates that have become resistant to antifungal drugs. To determine whether these types of alterations result when DNA repair pathways are eliminated, we constructed yeast strains bearing deletions in six genes involved in mismatch repair (MSH2 and PMS1) or double-strand break repair (MRE11, RAD50, RAD52, and YKU80). We show that the mre11Δ/mre11Δ, rad50Δ/rad50Δ, and rad52Δ/rad52Δ mutants are slow growing and exhibit a wrinkly colony phenotype and that cultures of these mutants contain abundant elongated pseudohypha-like cells. These same mutants are susceptible to hydrogen peroxide, tetrabutyl hydrogen peroxide, UV radiation, camptothecin, ethylmethane sulfonate, and methylmethane sulfonate. The msh2Δ/msh2Δ, pms1Δ/pms1Δ, and yku80Δ/yku80Δ mutants exhibit none of these phenotypes. We observed an increase in genome instability in mre11Δ/mre11Δ and rad50Δ/rad50Δ mutants by using a GAL1/URA3 marker system to monitor the integrity of chromosome 1. We investigated the acquisition of drug resistance in the DNA repair mutants and found that deletion of mre11Δ/mre11Δ, rad50Δ/rad50Δ, or rad52Δ/rad52Δ leads to an increased susceptibility to fluconazole. Interestingly, we also observed an elevated frequency of appearance of drug-resistant colonies for both msh2Δ/msh2Δ and pms1Δ/pms1Δ (MMR mutants) and rad50Δ/rad50Δ (DSBR mutant). Our data demonstrate that defects in double-strand break repair lead to an increase in genome instability, while drug resistance arises more rapidly in C. albicans strains lacking mismatch repair proteins or proteins central to double-strand break repair.  相似文献   

10.
We have studied telomere length in Schizosaccharomyces pombe strains carrying mutations affecting cell cycle checkpoints, DNA repair, and regulation of the Cdc2 protein kinase. Telomere shortening was found in rad1, rad3, rad17, and rad26 mutants. Telomere lengths in previously characterized rad1 mutants paralleled the replication checkpoint proficiency of those mutants. In contrast, rad9, chk1, hus1, and cds1 mutants had intact telomeres. No difference in telomere length was seen in mutants affected in the regulation of Cdc2, whereas some of the DNA repair mutants examined had slightly longer telomeres than did the wild type. Overexpression of the rad1+ gene caused telomeres to elongate slightly. The kinetics of telomere shortening was monitored by following telomere length after disruption of the rad1+ gene; the rate was ~1 nucleotide per generation. Wild-type telomere length could be restored by reintroduction of the wild-type rad1+ gene. Expression of the Saccharomyces cerevisiae RCK1 protein kinase gene, which suppresses the radiation and hydroxyurea sensitivity of Sz. pombe checkpoint mutants, was able to attenuate telomere shortening in rad1 mutant cells and to increase telomere length in a wild-type background. The functional effects of telomere shortening in rad1 mutants were assayed by measuring loss of a linear and a circular minichromosome. A minor increase in loss rate was seen with the linear minichromosome, and an even smaller difference compared with wild-type was detected with the circular plasmid.  相似文献   

11.
SMC1 coordinates DNA double-strand break repair pathways   总被引:5,自引:2,他引:3       下载免费PDF全文
The SMC1/SMC3 heterodimer acts in sister chromatid cohesion, and recent data indicate a function in DNA double-strand break repair (DSBR). Since this role of SMC proteins has remained largely elusive, we explored interactions between SMC1 and the homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways for DSBR in Saccharomyces cerevisiae. Analysis of conditional single- and double mutants of smc1-2 with rad52Δ, rad54Δ, rad50Δ or dnl4Δ illustrates a significant contribution of SMC1 to the overall capacity of cells to repair DSBs. smc1 but not smc2 mutants show increased hypersensitivity of HR mutants to ionizing irradiation and to the DNA crosslinking agent cis-platin. Haploid, but not diploid smc1-2 mutants were severely affected in repairing multiple genomic DNA breaks, suggesting a selective role of SMC1 in sister chromatid recombination. smc1-2 mutants were also 15-fold less efficient and highly error-prone in plasmid end-joining through the NHEJ pathway. Strikingly, inactivation of RAD52 or RAD54 fully rescued efficiency and accuracy of NHEJ in the smc1 background. Therefore, we propose coordination of HR and NHEJ processes by Smc1p through interaction with the RAD52 pathway.  相似文献   

12.
Resection of DNA double-strand break (DSB) ends is generally considered a critical determinant in pathways of DSB repair and genome stability. Unlike for enzymatically induced site-specific DSBs, little is known about processing of random “dirty-ended” DSBs created by DNA damaging agents such as ionizing radiation. Here we present a novel system for monitoring early events in the repair of random DSBs, based on our finding that single-strand tails generated by resection at the ends of large molecules in budding yeast decreases mobility during pulsed field gel electrophoresis (PFGE). We utilized this “PFGE-shift” to follow the fate of both ends of linear molecules generated by a single random DSB in circular chromosomes. Within 10 min after γ-irradiation of G2/M arrested WT cells, there is a near-synchronous PFGE-shift of the linearized circular molecules, corresponding to resection of a few hundred bases. Resection at the radiation-induced DSBs continues so that by the time of significant repair of DSBs at 1 hr there is about 1–2 kb resection per DSB end. The PFGE-shift is comparable in WT and recombination-defective rad52 and rad51 strains but somewhat delayed in exo1 mutants. However, in rad50 and mre11 null mutants the initiation and generation of resected ends at radiation-induced DSB ends is greatly reduced in G2/M. Thus, the Rad50/Mre11/Xrs2 complex is responsible for rapid processing of most damaged ends into substrates that subsequently undergo recombinational repair. A similar requirement was found for RAD50 in asynchronously growing cells. Among the few molecules exhibiting shift in the rad50 mutant, the residual resection is consistent with resection at only one of the DSB ends. Surprisingly, within 1 hr after irradiation, double-length linear molecules are detected in the WT and rad50, but not in rad52, strains that are likely due to crossovers that are largely resection- and RAD50-independent.  相似文献   

13.
UV-induced reversion of the arg4-17 ochre allele in Saccharomyces cerevisiae is largely dependent on translesion polymerase η (Rad30p), known to bypass cyclobutane-type TT dimers in an error-free fashion. arg4-17 locus reversion was predominantly due to T→C transition of T127, the 3′ T of a TT photoproduct site. This event was at least 20-fold reduced in a rad30 deletion mutant, irrespective of the status of nucleotide excision repair. These data correlate with known properties of 6–4 TT photoproducts and in vitro characteristics of polymerase η and suggest that polymerase η plays an important in vivo role in inserting G opposite the 3′ T of 6–4 TT photoproducts at this site. Alternatively, an unprecedented error-prone processing of cyclobutane-type photoproducts at this site by polymerase η must be assumed as the critical mechanism. Whereas photoreactivation results indeed hint at the latter possibility, a possible regulatory influence of reducing the overall UV damage load on the bypass probability of non-cyclobutane-type pyrimidine dimer photoproducts should not be dismissed.  相似文献   

14.
Whole genome sequencing of cancer genomes has revealed a diversity of recurrent gross chromosomal rearrangements (GCRs) that are likely signatures of specific defects in DNA damage response pathways. However, inferring the underlying defects has been difficult due to insufficient information relating defects in DNA metabolism to GCR signatures. By analyzing over 95 mutant strains of Saccharomyces cerevisiae, we found that the frequency of GCRs that deleted an internal CAN1/URA3 cassette on chrV L while retaining a chrV L telomeric hph marker was significantly higher in tel1Δ, sae2Δ, rad53Δ sml1Δ, and mrc1Δ tof1Δ mutants. The hph-retaining GCRs isolated from tel1Δ mutants contained either an interstitial deletion dependent on non-homologous end-joining or an inverted duplication that appeared to be initiated from a double strand break (DSB) on chrV L followed by hairpin formation, copying of chrV L from the DSB toward the centromere, and homologous recombination to capture the hph-containing end of chrV L. In contrast, hph-containing GCRs from other mutants were primarily interstitial deletions (mrc1Δ tof1Δ) or inverted duplications (sae2Δ and rad53Δ sml1Δ). Mutants with impaired de novo telomere addition had increased frequencies of hph-containing GCRs, whereas mutants with increased de novo telomere addition had decreased frequencies of hph-containing GCRs. Both types of hph-retaining GCRs occurred in wild-type strains, suggesting that the increased frequencies of hph retention were due to the relative efficiencies of competing DNA repair pathways. Interestingly, the inverted duplications observed here resemble common GCRs in metastatic pancreatic cancer.  相似文献   

15.
Genetic instability in the Saccharomyces cerevisiae rad9 mutant correlates with failure to arrest the cell cycle in response to DNA damage. We quantitated the DNA damage-associated stimulation of directed translocations in RAD9+ and rad9 mutants. Directed translocations were generated by selecting for His+ prototrophs that result from homologous, mitotic recombination between two truncated his3 genes, GAL1::his3-Δ5′ and trp1::his3-Δ3′::HOcs. Compared to RAD9+ strains, the rad9 mutant exhibits a 5-fold higher rate of spontaneous, mitotic recombination and a greater than 10-fold increase in the number of UV- and X-ray-stimulated His+ recombinants that contain translocations. The higher level of recombination in rad9 mutants correlated with the appearance of nonreciprocal translocations and additional karyotypic changes, indicating that genomic instability also occurred among non-his3 sequences. Both enhanced spontaneous recombination and DNA damage-associated recombination are dependent on RAD1, a gene involved in DNA excision repair. The hyperrecombinational phenotype of the rad9 mutant was correlated with a deficiency in cell cycle arrest at the G2-M checkpoint by demonstrating that if rad9 mutants were arrested in G2 before irradiation, the numbers both of UV- and γ-ray-stimulated recombinants were reduced. The importance of G2 arrest in DNA damage-induced sister chromatid exchange (SCE) was evident by a 10-fold reduction in HO endonuclease-induced SCE and no detectable X-ray stimulation of SCE in a rad9 mutant. We suggest that one mechanism by which the RAD9-mediated G2-M checkpoint may reduce the frequency of DNA damage-induced translocations is by channeling the repair of double-strand breaks into SCE.  相似文献   

16.
Mutator Phenotype Induced by Aberrant Replication   总被引:7,自引:4,他引:3       下载免费PDF全文
We have identified thermosensitive mutants of five Schizosaccharomyces pombe replication proteins that have a mutator phenotype at their semipermissive temperatures. Allele-specific mutants of DNA polymerase δ (polδ) and mutants of Polα, two Polδ subunits, and ligase exhibited increased rates of deletion of sequences flanked by short direct repeats. Deletion of rad2+, which encodes a nuclease involved in processing Okazaki fragments, caused an increased rate of duplication of sequences flanked by short direct repeats. The deletion mutation rates of all the thermosensitive replication mutators decreased in a rad2Δ background, suggesting that deletion formation requires Rad2 function. The duplication mutation rate of rad2Δ was also reduced in a thermosensitive polymerase background, but not in a ligase mutator background, which suggests that formation of duplication mutations requires normal DNA polymerization. Thus, although the deletion and duplication mutator phenotypes are distinct, their mutational mechanisms are interdependent. The deletion and duplication replication mutators all exhibited decreased viability in combination with deletion of a checkpoint Rad protein, Rad26. Interestingly, deletion of Cds1, a protein kinase functioning in a checkpoint Rad-mediated reversible S-phase arrest pathway, decreased the viability and exacerbated the mutation rate only in the thermosensitive deletion replication mutators but had no effect on rad2Δ. These findings suggest that aberrant replication caused by allele-specific mutations of these replication proteins can accumulate potentially mutagenic DNA structures. The checkpoint Rad-mediated pathways monitor and signal the aberrant replication in both the deletion and duplication mutators, while Cds1 mediates recovery from aberrant replication and prevents formation of deletion mutations specifically in the thermosensitive deletion replication mutators.  相似文献   

17.
We have isolated mutants sensitive to photo-addition of bi-functional and mono-functional derivatives of psoralen in Saccharomyces cerevisiae. Three of these pso mutants were analyzed in detail. They segregate in meiosis like Mendelian genes and complement each other, as well as existing radiation-sensitive (rad and rev) mutants. The study of heterozygous diploid strains (PSO+/pso) indicates that the three pso genes are recessive. The mutant pso1–1 demonstrates a cross-sensitivity to UV and γ-rays, whereas mutants pso2–1 and pso3–1 are specifically sensitive to photo-addition of psoralen derivatives. The comparison of exponentially growing cells to stationary-phase cells demonstrates that for the three mutants the defect in repair capacity of DNA cross-links and monoadducts concerns G1 and early S-phase cells. The pso2–1 mutant is, however, also defective in G2 repair and loses diploid resistance when it is in the homozygous state.—The block in repair capacity in these novel mutants is discussed in relation to the three other repair pathways known to be involved in the repair of furocoumarins photo-induced lesions in yeast DNA.  相似文献   

18.
Oshima T  Takano I 《Genetics》1980,96(4):841-857
Reverse and forward mutation, induced by photoaddition of 8-methoxypsoralen (8-MOP) and 3-carbethoxypsoralen (3-CPs) or ultraviolet light (UV), are reduced in three pso mutants of Saccharomyces cerevisiae. The pso1–1 strain exhibits a lower frequency of spontaneous reversion (antimutator) and is almost entirely unaffected by the three agents in both the haploid and diploid states. The pso2–1 strain demonstrates very reduced frequencies of 8-MOP and 3-CPs plus 365 nm radiation-induced mutations in happloid and diploid cells. UV-induced mutations are slightly reduced, whereas survival is almost normal. The pso3–1 strain is mutable by 8-MOP and 3-CPs photoaddition only in the low-dose range. After UV treatment, survival of pso3–1 is nearly normal, whereas the frequencies of induced mutants are diminished as compared to the normal PSO+. An analogue of adenine, 6-N-hydroxyaminopurine, is capable of inducing reversions in wild type, as well as in pso and rad6–1 mutant strains, indicating that this drug may act as a direct mutagen in yeast. The comparison of photoaddition of the bifunctional agent (8-MOP) to that of the monofunctional one (3-CPs) confirms that cross-links, as well as monoadditions, are mutagenic in S. cerevisiae. Repair, of the recombinational type, taking place in diploid cells or in haploid cells in G2 phase leads to higher survival, but appears to be error-free.  相似文献   

19.
A genetic system designed to monitor recombination and sporulation in various repair-deficient yeast strains was constructed. Variously heterozygous at seven or eight sites distributed across the genome, the system facilitated sensitive detection of changes in frequency or pattern of meiotic recombination. Ten rad mutants sensitive primarily to UV-irradiation and without terminal blocks in the sporulation process were studied. Seven were defective in excision repair (rad1, rad2, rad3, rad4, rad10, rad14 and rad16), and three were defective in mutagenic repair (rad5, rad9 and rad18). Individually, each mutant displayed behavior consistent with an orthodox meiosis including a wild-type meiotic recombination profile with respect to gene conversion, PMS and intergenic map distances. Accordingly, we conclude that these mutants are without major effect on meiotic heteroduplex formation or correction. However, certain combinations of excision-defective mutants with rad18 exhibited marked ascosporal inviability. Tetraploids homozygous for rad1 and rad18 produce a large proportion of diploid spores containing a recessive lethal.  相似文献   

20.
When recently arisen spontaneous petite mutants of Saccharomyces cerevisiae are crossed, respiratory competent diploids can be recovered. Such restored strains can be divided into two groups having sectored or unsectored colony morphology, the former being due to an elevated level of spontaneous petite mutation. On the basis of petite frequency, the sectored strains can be subdivided into those with a moderate frequency (5–16%) and those with a high frequency (>60%) of petite formation. Each of the three categories of restored strains can be found on crossing two petites, suggesting either that the parental mutants contain a heterogeneous population of deleted mtDNAs at the time of mating or that different interactions can occur between the defective molecules. Restriction endonuclease analysis of mtDNA from restored strains that have a wild-type petite frequency showed that they had recovered a wild-type mtDNA fragmentation pattern. Conversely, all examined cultures from both categories of sectored strains contained aberrant mitochondrial genomes that were perpetuated without change over at least 200 generations. In addition, sectored colony siblings can have different aberrant mtDNAs. The finding that two sectored, restored strains from different crosses have identical but aberrant mtDNAs provides evidence for preferred deletion sites from the mitochondrial genome. Although it appears that mtDNAs from sectored strains invariably contain duplications, there is no apparent correlation between the size of the duplication and spontaneous petite frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号