首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 2-yr field and laboratory study investigated insect resistance of the maize, Zea mays L., inbred Tex6, which has previously demonstrated resistance to Aspergillus ear rot and aflatoxin production, relative to susceptible inbred B73. Field studies indicated significantly greater resistance to insect feeding of V4-V8 growth stage Tex6 plants compared with B73 plants in both years, primarily to flea beetles (Chaetonema spp.). Field studies of natural (1999) and artificial (2000) infestations of corn earworms, Helicoverpa zea (Boddie), indicated much lower levels of kernel damage at milk stage (approximately three-fold) and smaller surviving larvae (approximately three-fold) in Tex6 compared with B73 ears. At harvest similar trends in reduction of numbers of damaged kernels per ear, as well as incidence and numbers of kernels per ear symptomatically infected by Fusarium spp. were noted. Laboratory studies indicated little difference in mortality or survivor weight of caterpillars or sap beetle adults caged with milk stage kernels of the two inbreds. However, assays with silks indicated significantly greater mortality of H. zea in both 1999 and 2000, and European corn borer, Ostrinia nubilalis (Hübner) in 1999 (only year tested) when fed Tex6 silks compared with B73 silks. Pollinated Tex6 silks were generally darker colored and more toxic than unpollinated silks. Thus, it is possible that commercially usable inbreds with resistance to insects, which also contribute to the mycotoxin problem through vectoring and damage, could be produced using Tex6 as a source.  相似文献   

2.
The establishment and survival of western corn rootworm, Diabrotica virgifera virgifera LeConte, was evaluated on transgenic Bacillus thuringiensis Berliner maize, Zea mays L., expressing the mCry3A protein (MIR604) and non-Bt maize with the same genetic background (isoline maize) at different stages of development in 2007 and 2008. Overall, western corn rootworm larval recovery, root damage, and adult emergence were significantly higher on isoline maize compared with MIR604. The number of larvae and adults collected from MIR604 did not significantly differ among egg hatch dates from each maize developmental stage evaluated in either year. In 2007, damage to isoline maize roots was lower than expected and never exceeded 0.24 nodes of damage. In 2008, over 0.60 nodes of damage occurred on isoline maize roots. The mean weight and head capsule width of larvae and adults recovered from MIR604 and isoline maize were generally not significantly different. Results are discussed in relation to insect resistance management of western corn rootworm.  相似文献   

3.
The objectives of this comparative study were to investigate the responses of biomass accumulation and partitioning to nitrogen supply and to examine the effect of low-nitrogen supply on the photosynthetic responses of maize leaves to steady-state and dynamic light. While the difference in leaf number and stem diameter was not statistically significant, there was a significant difference in plant height between the low-nitrogen and high-nitrogen maize plants. During grain-filling period, the ear leaf of the low-nitrogen maize plants possessed lower values of maximum photosynthetic rate, maximum stomatal conductance, maximum transpiration rate, apparent quantum yield, light compensate point, and carboxylation efficiency than did that of the high-nitrogen maize plants. Contrarily, lower values of intercellular CO2 concentration and dark respiration rate were observed in the high-nitrogen maize plants. In addition, a slower response to simulated sunflecks was found in the ear leaf of the low-nitrogen maize plants; however, stomatal limitations did not operate in the ear leaf of the high-nitrogen or low-nitrogen maize plants during the photosynthetic induction. As compared to the high-nitrogen maize plants, the low-nitrogen maize plants accumulated much less plant biomass but allocated a greater proportion of biomass to belowground parts. In conclusion, our results suggested that steady-state photosynthetic capacity is restricted by both biochemical and stomatal limitation and the photosynthetic induction is constrained by biochemical limitation alone in low-nitrogen maize plants, and that maize crops respond to low-nitrogen supply in a manner by which more biomass was allocated preferentially to root tissues.  相似文献   

4.
The ontogeny of staminate tassels and pistillate ears in the maize mutant Fascicled ear was examined using scanning electron microscopy. The normal pattern of inflorescence development is perturbed by the Fascicled ear mutation at the transition stage. The Fascicled ear mutation promotes the development of an abnormal transition stage axis that is both shorter and broader than the wild type. The inflorescence apical meristem then undergoes a bifurcation, and two inflorescence axes arise in place of a single axis. Each derived inflorescence apical meristem may undergo a similar perturbation sequence. This expression of the Fascicled ear mutation may be repeated one to several times, which leads to the development of a fascicled pistillate inflorescence and a fascicled central spike in the staminate inflorescence. The apical meristems of some tassel branches are also bifurcated. Subsequent organogenesis during paired-spikelet and floral development in Fascicled ear plants follows the pattern of normal maize. However, triplet spikelets are occasionally observed. The organogenic disruption by the Fascicled ear mutation that we describe will aid genetic and molecular analysis on the regulation of inflorescence development in maize and other members of the genus Zea.  相似文献   

5.
【目的】明确草地贪夜蛾Spodoptera frugiperda在浙江省鲜食玉米品种上的发生规律和防治方法。【方法】2019年在浙江东阳通过灯诱和性信息素诱捕方法研究草地贪夜蛾成虫消长规律;通过田间调查明确成虫产卵习性和幼虫对玉米植株的为害习性,以及幼虫对不同甜、糯玉米品种的为害差异;通过田间药效试验筛选高效防治药剂。【结果】灯诱和性信息素诱捕结果表明草地贪夜蛾在浙江东阳于6月中下旬和9月中旬出现2次明显成虫高峰,9月峰值显著高于6月;草地贪夜蛾成虫趋向于在较低叶龄玉米植株上产卵,80%的卵产于玉米叶片正面,幼虫取食具有显著的趋嫩习性,严重为害玉米心叶和果穗;不同玉米品种被害株率差异较大,甜玉米品种为害株率为0~28.41%,糯玉米品种为害株率为0~42.50%。2019年在浙江东阳进行的田间药剂试验筛选出了甲维盐、虱螨脲、乙基多杀菌素、甲氧虫酰肼、虫螨腈、丙溴磷、灭多威、茚虫威、苦皮藤素Celastrus angulatus和甘蓝夜蛾核型多角体病毒(Mamestra brassicae NPV, MbNPV)等高效防治药剂,药后3 d虫口减退率为87.61%~98.99%,田间持效期约为7~10 d。【结论】草地贪夜蛾不仅为害玉米植株的叶片,更严重为害果穗,秋季为害显著高于春季,对鲜食玉米的生产造成严重影响。在防治玉米上的草地贪夜蛾时,应采用化学防治、生物防治和物理诱控相结合的综合防控措施,以及重视苗期保苗和后期保穗,适当放宽拔节期到抽雄期防治阈值的防治策略。  相似文献   

6.
Two corn borer species are the principal maize insect pests in Europe, the European corn borer, Ostrinia nubilalis (Hübner), and the pink stem borer, Sesamia nonagrioides (Lefebvre). Hence, it would be advisable to evaluate the European maize germplasm for corn borer resistance to generate European varieties resistant to corn borer attack. The creation of the European Union Maize Landrace Core Collection (EUMLCC) allowed the screening of most of the variability for European corn borer resistance present among European maize local populations from France, Germany, Greece, Italy, Portugal, and Spain, testing a representative sample. The objective of this study was the evaluation of stem and ear resistance of the EUMLCC to European corn borer and pink stem borer attack. Trials were made at two Spanish locations that represent two very different maize-growing areas. Populations that performed relatively well under corn borer infestation for stem and ear damage were 'PRT0010008' and'GRC0010085', among very early landraces; 'PRT00100120' and 'PRT00100186', among early landraces; 'GRC0010174', among midseason landraces; and 'ESP0070441', among late landraces. Either the selection that could have happen under high insect pressure or the singular origin of determined maize populations would be possible explanations for the higher corn borer resistance of some landraces. Landraces 'PRT0010008', 'FRA0410090', 'PRT00100186', and 'ESP0090214' would be selected to constitute a composite population resistant to corn borers and adapted to short season, whereas populations 'ESP0090033', 'PRT00100530', 'GRC0010174', and 'ITA0370005' would be used to make a resistant composite adapted to longer season.  相似文献   

7.
In maize (Zea mays L.), GSp1, the predominant GS isozyme of the developing kernel, is abundant in the pedicel and pericarp, but absent from the endosperm and embryo. Determinations of GSp1 tissue distribution in vegetative tissues have been limited thus far to root and leaves, where the isozyme is absent. However, the promoter from the gene encoding GSp1 has been shown to drive reporter gene expression not only in the maternal seed-associated tissues in transgenic maize plants, but also in the anthers, husks and pollen (Muhitch et al. 2002, Plant Sci 163: 865-872). Here we report chromatographic evidence that GSp1 resides in immature tassels, dehiscing anthers, kernel glumes, ear husks, cobs and stalks of maize plants, but not in mature, shedding pollen grains. RNA blot analysis confirmed these biochemical data. In stalks, GSp1 increased in the later stages of ear development, suggesting that it plays a role in nitrogen remobilization during grain fill.  相似文献   

8.
水稻穗期大螟危害习性初步观察   总被引:1,自引:0,他引:1  
冯成玉  李昌华  程建华 《昆虫知识》2010,47(5):1011-1016
于2009年常规中稻的蜡熟前期、中期和黄熟期、枯熟期,分别取样观察大螟Sesamia inferens Walker的钻蛀危害习性。结果发现:单株螟害的蛀孔数一般为2~3个,多的达5个,而且表现白穗株>枯穗株>虫伤株。螟害株的蛀孔部位随着稻穗趋向成熟和大螟虫龄的增大,逐渐由稻株的中上部节间向中下部节间转移。其中,白穗株与枯穗株有70%以上的蛀孔分别分布于稻株由上向下的第1~3与3~5节间上;在水稻的这4个生长时期中,虫伤株有90%左右的蛀孔分别分布于稻株由上向下的第1~3、1~4和2~5、3~5节间上,全株虫量有85%以上依次分布于第1~3、2~4和3~5、3~5节间上,单株虫量4个时期最高分别为18、6、3、2头,同一节间内的4个时期最高虫量分别为12、5、1、1头;单个节间有多头螟虫时,80%以上为1~3龄幼虫。随着稻穗趋向成熟,白穗株和枯穗株上的虫量均逐渐下降,而虫伤株上的虫量则相对稳定或有上升的趋势;至枯熟期后,虫伤株的有虫株率和有虫孔率均稳定在30%以上。  相似文献   

9.

Background

Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preference, habitat selection and feeding behavior of predators in farmland ecosystem consisting of multiple crops, which is central to devising and delivering an integrated pest management program.

Methodology

The hypotheses was that maize can serve as habitat for natural enemies and benefits predators to provide potential to enhance biological control for pest insects in cotton. This explicit process of a predatory beetle, Propylea japonica, in agricultural ecosystem composed of cotton and maize were examined by field investigation and stable carbon isotope analysis during 2008–2010.

Principal Finding

Field investigation showed that P. japonica adults will search host plants for high prey abundance before laying eggs, indicating indirectly that P. japonica adults prefer to inhabit maize plants and travel to cotton plants to actively prey on aphids. The δ13C values of adult P. japonica in a dietary shift experiment found that individual beetles were shifting from a C3- to a C4-based diet of aphids reared on maize or cotton, respectively, and began to reflect the isotope ratio of their new C4 resources within one week. Approximately 80–100% of the diet of P. japonica adults in maize originated from a C3-based resource in June, July and August, while approximately 80% of the diet originated from a C4-based resource in September.

Conclusion/Significance

Results suggest that maize can serve as a habitat or refuge source for the predatory beetle, P. japonica, and benefits predators to provide potential to enhance biological control for insect pests in cotton.  相似文献   

10.
Leafhopper transmission of a virus causing maize wallaby ear disease   总被引:7,自引:0,他引:7  
A virus causing maize wallaby ear disease was transmitted experimentally by Cicadulina bimaculata to fourteen species of monocotyledonous plants. It was also transmitted by Nesoclutha pallida, and by grafting. The symptoms obtained resemble closely those reported for maize leaf gall disease in the Philippines and maize rough dwarf virus in Italy and Israel. About 85% of C. bimaculata caught in the field carried maize wallaby ear virus (MWEV), and many of their progeny were viruliferous even when not allowed access to infected plants. The proportion of infective individuals in clones bred for nine generations from selected non-transmitting adults decreased from 85% in the first nymphs to less than 1%; such individuals were difficult to rear, as their fecundity and longevity decreased greatly. N. pallida transmitted MWEV after injection with partially purified extracts of infected plants. Spherical particles c. 85 nm in diameter were found in the salivary glands of viruliferous C. bimaculata, but not in those of non-transmitting individuals. The particles occurred in tubules in the cytoplasm and each had a densely stained core c. 50 nm in diameter. Particles similar in size to the core were found in extracts of infected but not uninfected maize, and in extracts of viruliferous but not in non-viruliferous C. bimaculata and N. pallida.  相似文献   

11.
Maize chlorotic mottle virus (MCMV) is one of the co‐infection pathogens that cause corn (maize) lethal necrosis, but the transmission mechanism of MCMV is not yet clear. In order to determine the ability of western flower thrips (Frankliniella occidentalis; WFT) to transmit MCMV, imported maize seeds from Thailand were germinated in an insect‐free greenhouse and the seedlings were tested for the transmission by WFT of chlorotic mottle virus disease. The thrips (WFT), starved for 48 h then allowed to feed for 30 min on maize plants infected with MCMV or asymptomatic maize plants, were transferred to healthy seedlings. After 35 days, the seedlings with WFT from diseased maize plants showed chlorotic mottle symptoms, whereas seedlings with WFT from asymptomatic maize plants remained healthy. A single band of 711 bp was amplified by RT‐PCR using primers MCMV‐F/MCMV‐R from the MCMV‐infected plants and WFT collected from the diseased plants. Sequencing of the amplified product and further sequence comparison indicated that the two viruses from both sources showed 99% similarity of nucleotides and they should be regarded as identical. In addition, isometric particles c. 30 nm in diameter, characteristic of MCMV, were found in the WFT samples from diseased maize plants. Thus, it is concluded that WFT transmits MCMV. Our findings suggest that corn lethal necrosis disease can be controlled or minimized by the eradication of WFT from the field or greenhouses.  相似文献   

12.
A seed blend refuge has been implemented in the U.S. Corn Belt for Bt maize resistance management. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a target pest of Bt maize in the Americas. The larvae of this pest are mobile, which may affect the efficacy of seed blend refuges. In this study, field and greenhouse trials were conducted to determine the performance of Bt-susceptible (aabb) and -heterozygous dual-gene-resistant (AaBb) genotypes of S. frugiperda in seed blends of non-Bt and pyramided Bt maize. Three field trials evaluated larval survival, larval growth, and plant injury with aabb in seed blends of Bt maize expressing Cry1A.105/Cry2Ab2/Vip3A with 0–30% non-Bt seeds. Greenhouse tests investigated the performance of aabb and AaBb in seed blends of Cry1A.105/Cry2Ab2 with 0–30% non-Bt seeds. In pure non-Bt maize plots, after 9–13 d of neonates being released on the plants, 0.39 and 0.65 larvae/plant survived with leaf injury ratings of 4.7 and 5.9 (Davis's 1–9 scale) in the field and greenhouse, respectively. In contrast, live larvae and plant injury were virtually not observed on Bt plants across all planting patterns. Larval occurrence and plant injury by aabb on non-Bt plants were similar between seed blends and pure non-Bt plantings, suggesting that the blended refuges could provide an equivalent susceptible population as structured refuge under the test conditions. In the greenhouse, the two insect genotypes in seed blends performed similarly, indicating that the seed blends did not provide more favorable conditions for AaBb over aabb. The information generated from this study should be useful in managing S. frugiperda and evaluating if send blends could be suitable refuge options for Bt resistance management in the regions where the insect is a primary target pest.  相似文献   

13.
The bioactivity of powder from the leaves of Aristolochia ringens, Dalbergia saxatilis, Dioclea reflexa, Ocimum gratissimum, Chrysophyllum albidum, Moringa oleifera, Citrus limon and Newbouldia laevis was tested against the larger grain borer (LGB) in maize kernels and the effect of the powder on the nutritional composition of the kernels was determined. A total of 72 glass bottles containing 100?g maize kernels was divided into four groups. In the first group of 32 glass bottles, 5?g powder of the experimental plants was admixed uniformly with the kernels (5%?w/w). Ten 1–5-day-old LGB adults were introduced into each of the glass bottles. A second group of 32 glass bottles contains 100?g maize kernels admixed with the plant powder as described above, but LGB were not added. In the third group of four glass bottles, 100?g maize kernels received insects only, while in the fourth group of four glass bottles 100?g maize kernels were neither mixed with plant products nor infested with LGB. The treatments were arranged on worktables using completely randomised design and left for three months. The plant products-treated samples (insect free) were passed through a 30?mesh sieve to sieve out the powder and the clean kernels were analysed for proximate composition. The untreated maize kernel had a significantly (p?<?0.05) higher % of grain weight loss (17.33), grain damage % (70.96), number (122.0) of adult LGB, weight (14.46?g) of grain dust and lower % of grain germination. The adsorption and absorption of some of the plant powder by the kernels had significant effect on the kernel composition of protein, fibre and carbohydrate, but not on moisture, dry matter and fat and ash content. Control of LGB with the powder of the test plants could be used as green insecticide for the management of LGB.  相似文献   

14.
Larvae of Ostrinia nubilalis (Hübner) cause significant damage to maize ears and reduce market value of fresh sweet corn. Females rely on volatile cues to locate and oviposit preferentially on maize plants. In addition, oviposition behavior of females is influenced by soil management practices as they usually lay more eggs on maize plants grown on conventional soil than on organic soils that harbor rich microbial diversity. Since some plant growth‐promoting rhizobacteria (PGPR) are known to mediate plant health via suppression of soil pathogens and enhanced uptake of nutrients; we hypothesized that inoculation of maize seeds with PGPR will alter emission of maize volatile and reduce the attractiveness of plants to ovipositing O. nubilalis. Plants treated with the single PGPR strain Bacillus pumilus INR‐7, two PGPR mixtures (Blend‐8 or Blend‐9) or untreated plants were presented to O. nubilalis females in oviposition choice bioassays. Headspace volatile organic compounds (VOCs) from the plants were analyzed by gas chromatography–mass spectrometry (GC–MS). Ostrinia nubilalis laid significantly fewer eggs on PGPR‐treated plants compared to untreated plants. In two‐choice oviposition experiments, significantly higher numbers of eggs were laid on untreated plants compared to PGPR‐treated plants. PGPR‐treated plants emitted fewer VOCs than untreated plants which, in part, explains the relatively fewer eggs on PGPR‐treated plants. These results indicate that selected PGPR treatments can alter maize plant volatiles with important ramifications for plant‐insect interactions. The implication of this finding is discussed in the context of integrated management of soil health to improve crop resistance to biotic stressors.  相似文献   

15.
Breeding efforts to obtain more nutritious maize materials aimed at alleviating dietary deficiencies in developing countries have resulted in an improved maize germplasm known as quality protein maize (QPM). Quality protein maize has higher contents of tryptophan, lysine, and leucine than common maize, but suffers from some major agronomic drawbacks found in common inbred maize lines, such as susceptibility to insect pests and fungal and bacterial diseases and herbicide sensitivity. The development of a reproducible and efficient protocol for tissue culture of QPM is expected to solve some of these deficiencies. In this work, we have evaluated different formulations for in vitro induction of morphogenic responses in three QPM lines developed by the International Maize and Wheat Improvement Center (CIMMYT): CML (CIMMYT maize line)-145, CML-176, and CML-186. Only CML-176 and CML-186 have proven to be responsive to the in vitro conditions considered in this work, with CML-176 showing the highest efficiency in regenerable callus formation and growth. N6C1 medium was found to be efficient for in vitro culture of QPM, whereas no plants could be regenerated by using MPC medium. From CML-176 embyogenic calli cultured on N6C1 medium, we were able to regenerate up to 0.3 plants per 500 mg fresh weight (FW) callus. Further modifications in this experimental protocol, including the replacement of 3,6-dichloro-o-anisic acid with 2,4-dichlorophenoxyacetic acid and modification of the N6C1 vitamin balance, significantly increased the regeneration response of the induced calli, with up to 16.8 and 9.3 plants recovered per 500 mg FW callus for CML-176 and CML-186, respectively.  相似文献   

16.
Fusarium verticillioides is an important fungus occupying dual roles in the maize plant. The fungus functions as an endophyte, a fungal/host interaction beneficial to the growth of some plants. At other times, the fungus may function as a mycotoxin producing pathogen. The advantages and/or disadvantages of the endophytic relationship must be established in order to target appropriate sites for controlling diseases and mycotoxins in maize. One possibility could be to ensure seed maize is fungal free prior to planting. Reciprocal inoculations were made with two fungal isolates on seed of two maize genotypes. Yield was measured at harvest by ear and seed characters and vegetative growth at one-month intervals for plant survival, height, weight and stem diameter. Yield and vegetative growth differed among mature plants only once based on seed inoculation status. In 1998, plant weight was reduced and seed weight per ear was increased for the dent maize, GT-MAS: gk, grown from F. verticillioides RRC 374- inoculated seed compared to other seed treatments. Most vegetative characters were reduced at the first collection for Silver Queen plants grown from F. verticillioides-inoculated seed in 1997 and 1999, but not in 1998. However, no significant differences occurred among mature Silver Queen plants during any of the three growing seasons. In conclusion, yield and vegetative growth of mature maize plants grown from F. verticillioides-inoculated seed were equal to or greater than plants grown from non-inoculated seed under south Georgia field conditions during 1997, 1998, and 1999.  相似文献   

17.
Three on-farm sites in Iroquois County, IL, each containing an adjacent 16.2-ha commercial production maize, Zea mays L., and soybean, Glycine max (L.) Merr., field, were monitored for western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), adults from June through September 1999-2001. Mean captures of D. v. virgifera adults as measured with Pherocon AM yellow sticky traps were significantly greater in maize than in soybean. Overall mean numbers of D. v. virgifera adults captured with vial traps were significantly greater in soybean than in maize. Emergence cage data revealed that after 50% emergence of D. v. virgifera adults occurred, peak captures of D. v. virgifera adults occurred in maize as measured with vial and Pherocon AM traps. After maize reached the R2 (blister stage, 10-14 d after silking) stage of development and 90% emergence of D. v. virgifera adults had occurred, peak captures of D. v. virgifera adults were observed in soybean by using vial and Pherocon AM traps. Also, after maize reached the R2 stage of development, numbers of females significantly increased in soybean and decreased in maize. Captures of female D. v. virgifera adults frequently exceeded published economic thresholds in soybean, regardless of trap type used. Estimated survival of variant D. v. virgifera (egg to adult) in these commercial rotated maize fields was 10.7 and 9.4% from 1999 to 2000 and from 2000 to 2001, respectively. This compares with nonvariant D. v. virgifera survival estimates in continuous maize production systems in Iowa of 6.7 and 11% from 1983 to 1984 and from 1984 to 1985, respectively.  相似文献   

18.
Busseola fusca Fuller (Lepidoptera: Noctuidae) is the major pest on maize and sorghum crops in sub-Saharan Africa. As a specialised phytophagous insect, survival of B. fusca larvae depends on the presence of the cultivated host plants. Taking into account recent evidence of host-plant presence acting on pheromone perception and production in Lepidoptera, we investigated the effect of different host and non-host plants on reproductive behaviour in B. fusca: female calling behaviour and male attraction by female. Results showed that both behaviours did not change in presence of plants, whether they are larvae host plant or oviposition repellent plant. Native host associated mating remains unknown for this species, but results are likely to favour the hypothesis that mating behaviour is not related to the presence of cultivated or putative native host plants.  相似文献   

19.
Plant quality is one of the main factors influencing the fitness of phytophagous insects. Plant quality can vary not only among genotypes of the same host plant species, but also relative to the insect sex or its life stage. In the present study, the performance of larvae and adults of the pollen beetle (Meligethes aeneus F., Coleoptera: Nitidulidae), a major insect pest of oilseed rape crops, is compared on six genotypes of oilseed rape (Brassica napus). All of the traits that are measured vary among genotypes, and comprise larval developmental duration, life span of unfed emerging adults and survival time of field‐sampled adults fed with pollen from the different genotypes. No correlation is found between insect performance and quantity of food available, showing that the quality of the food (i.e. pollen) is the fitness determinant for this insect species. Additionally, the performance of larvae and adults is also not correlated despite use of the same plant genotypes, suggesting that the determinants of pollen quality differ at least partially between both life stages. It is hypothesized that this may be a result of extensive differences in diet breadth between the life stages: larvae are specialists of brassicaceous plants, whereas adults are generalists. Finally, it is suggested that the manipulation of plant quality to increase pollen beetle development time may comprise a valuable strategy for favouring biological control by natural enemies of this pest; for example, as a result of extending the vulnerability window of larvae to attack by parasitoids.  相似文献   

20.
Sesamia nonagrioides Lefebvre is a major insect pest of maize (Zea mays L.) in northwestern Spain. The inheritance of ear resistance in field corn to this pest has not been studied. This work aims to determine the importance of genetic (additive, dominance, and epistatic effects) and environmental effects in the inheritance of ear resistance to S. nonagrioides. Three field corn inbreds (CM109, EP31, and EP42) were used as parents and two crosses (CM109 x EP31 and CM109 x EP42) were made. These inbreds show different ear resistance levels to S. nonagrioides, with CM109 more resistant than EP31 and EP42. For each cross, parents (P1, P2), F1, F2, and backcrosses to each parent (BC1 and BC2) were evaluated. Correlations among ear damage traits showed that general appearance of the ear should be useful indicator of ear resistance. Ear resistance was dominant to susceptibility and was transmitted from inbreds to their hybrids. The additive-dominance model fit the generation mean analysis for both crosses and the degree of genetic control varied depending on the cross and trait. For both crosses, additive and dominance effects were significant for most ear damage traits. Epistatic gene effects were significant for husk and shank damage, and gene effects for number and length of tunnels were not significant. Because ear resistance involved additive and dominance effects for this set of inbreds, breeding procedures based on both types of gene action should be effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号