首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Trehalose is the main haemolymph sugar in most insects including the tobacco hornworm, Manduca sexta, and is potentially a prime target for an invading pathogenic fungus. There was considerably more trehalose-hydrolysing activity in the haemolymph of caterpillars infected with Metarhizium anisopliae than in controls. This appeared to be due primarily to additional isoforms; one of which could also hydrolyse maltose and was designated an alpha-glucosidase. A comparable isoform was identified in in vitro culture of the fungus, supporting a fungal origin for the in vivo enzyme. The in vitro fungal enzyme, alpha-glucosidase-1 (alpha-gluc-1), was purified to homogeneity and partially characterised. A study with the trehalase inhibitor trehazolin and C14 trehalose suggested that extracellular hydrolysis is important for fungal mobilisation of trehalose. Haemolymph glucose increases significantly during mycosis of tobacco hornworm larvae by M. anisopliae, consistent with the hydrolysis of trehalose by extracellular fungal enzymes. The implications for the host insect are discussed.  相似文献   

2.
Three out of 4 isolates of the Deuteromycete Metarhizium anisopliae were pathogenic for larvae of the tobacco hornworm, Manduca sexta. The most virulent isolate (ME1) grew sparsely in the insect prior to death and caused paralysis of its host. The other 2 pathogenic isolates killed Manduca larvae more slowly, grew profusely in the haemolymph and did not induce symptoms of toxicosis. Toxicosis is apparently due to the production by the fungus of several cyclodepsipeptide toxins, destruxins (DTX). ME1 produced large quantities of DTX in vitro, while other isolates produced less. Destruxin A (DTX A) was recovered from the haemolymph of paralysed, diseased insects infected with ME1, but not with other isolates. It is suggested that DTX may have a pathogenic role, when the toxins are active in causing disease, or an aggressive role, when they facilitate the establishment of the pathogen.  相似文献   

3.
Insect hemocytes play a major role in developmental processes where they disassociate and rebuild metamorphosing tissues while undergoing physiological changes themselves. We identified hemocyte changes from the last larval to the beginning of the pupal stage of the tobacco hornworm, Manduca sexta. Larval and pupal hemocytes behaved differently in a 40% Percoll density gradient. Larval granular cells were found in almost all density layers, pupal granular cells were abundant in high density layers; larval plasmatocytes occurred in dense layers, pupal plasmatocytes became enriched in less dense layers of the gradient. Using a panel of monoclonal antibodies generated against purified hemocytes, several different antibody binding patterns were identified. Quantitative differences in staining intensities were observed more often than qualitative changes, e.g. a loss or a gain of staining. Both phenomena were related to both plasmatocytes and granular cells. The distribution of the corresponding antigens in tissues was tested on cross sections of larvae and pupae as well as in Western blot analyses using organ homogenates. Several antibodies were specific for hemocytes only, among which two antibodies bound to molecules of the hematopoietic organ. Other antibodies had an additional reactivity to other tissues, mainly to the basal lamina.  相似文献   

4.
The dynamics of cyclic peptide destruxins (dtxs) produced by Metarhizium anisopliae strains V245 and V275 were monitored both on solid and in liquid media. The results showed that both strains did not produce dtxs in large-scale fermenter cultures or solid Czapek Dox (CD) agar. Production of the major dtxs A and B could be determined in both strains when grown on rice for up to 10-30 days. The main dtxs A, B, E, and E diol were detected in CD liquid culture filtrate from both strains after three days post-inoculation on. Parallel decrease of dtx E and increase of E diol in the culture medium were found, indicating that the latter is the hydrolytic product from the former. Production of dtxs A and B was significantly positively correlated. A negative correlation was observed between the production of the metabolites and pH value of the medium. The influence of different nutrient sources on dtx production was evaluated by using media with different carbon and nitrogen ratios as well as with different insect homogenates. The findings showed that the amount of dtxs A, B, and E increased with the increasing content of peptone in the medium. When insect homogenate was used as single nutrient source or added to CD medium, no toxins were detected in the culture filtrate. The potential risk posed by the toxic metabolites during mass production is discussed.  相似文献   

5.
6.
The locust, Locusta migratoria, has the capacity to develop a behavioural fever which reduces fungal infection by Metarhizium anisopliae var acridum. We investigated hemocyte and blastospore kinetics in infected insects under conditions that did or did not allow thermoregulation. Hemocyte concentrations were severely reduced in inoculated insects that did not thermoregulate but remained similar to those of controls in inoculated insects that were allowed to thermoregulate. Reductions in hemocyte counts were accompanied by an increase in the concentration of blastospores. In non-thermoregulating insects, circulating blastospores were first observed two days post-inoculation and had heavily colonized the hemolymph by day 5; in contrast, no blastospores were recovered from hemolymph of inoculated-thermoregulating insects. We used fluorescein isothiocyanate (FITC)-labelled silica beads to examine in vivo phagocytosis in thermoregulating and non-thermoregulating locusts. In the absence of fungus, a greater proportion of beads were engulfed by hemocytes in thermoregulating than in non-thermoregulating locusts early (4 and 24h) after bead injection, but the proportions were similar thereafter. In infected locusts, phagocytosis in non-thermoregulating insects was progressively impaired; such impairment, however, was not observed in challenged, thermoregulating insects. Our results suggest that thermoregulation helped keep fungal growth in check, apparently through the maintenance of hemocyte population levels and the direct inhibition of blastospore propagation by elevated temperatures.  相似文献   

7.
The gene ODC1, which codes for the ornithine decarboxylase enzyme, was isolated from the entomopathogenic fungus, Metarhizium anisopliae. The deduced amino acid sequence predicted a protein of 447 amino acids with a molecular weight of 49.3 kDa that contained the canonical motifs of ornithine decarboxylases. The ODC1 cDNA sequence was expressed in Escherichia coli cells; radiometric enzyme assays showed that the purified recombinant protein had ornithine decarboxylase activity. The optimum pH of the purified Odc1 protein was 8.0-8.5, and the optimum reaction temperature was 37 °C. The apparent Km for ornithine at a pyridoxal phosphate concentration of 20 mM was 22 μM. The competitive inhibitor of ODC activity, 1,4-diamino-2-butanone (DAB), at 0.25 mM inhibited 95% of ODC activity. The ODC1 mRNA showed an increase at the beginning of appressorium formation in vitro. During the M. anisopliae invasion process into Plutella xylostella larvae, the ODC1 mRNA showed a discrete increase within the germinating spore and during appressorium formation. The second expression peak was higher and prolonged during the invasion and death of the insect. The ODC1 gene complements the polyamine auxotrophy of Yarrowia lipolytica odc null mutant.  相似文献   

8.
9.
The possible contribution of extracellular constitutively produced chitin deacetylase by Metarhizium anisopliae in the process of insect pathogenesis has been evaluated. Chitin deacetylase converts chitin, a beta-1,4-linked N-acetylglucosamine polymer, into its deacetylated form chitosan, a glucosamine polymer. When grown in a yeast extract-peptone medium, M. anisopliae constitutively produced the enzymes protease, lipase, and two chitin-metabolizing enzymes, viz. chitin deacetylase (CDA) and chitosanase. Chitinase activity was induced in chitin-containing medium. Staining of 7.5% native polyacrylamide gels at pH 8.9 revealed CDA activity in three bands. SDS-PAGE showed that the apparent molecular masses of the three isoforms were 70, 37, and 26 kDa, respectively. Solubilized melanin (10microg) inhibited chitinase activity, whereas CDA was unaffected. Following germination of M. anisopliae conidia on isolated Helicoverpa armigera, cuticle revealed the presence of chitosan by staining with 3-methyl-2-benzothiazoline hydrazone. Blue patches of chitosan were observed on cuticle, indicating conversion of chitin to chitosan. Hydrolysis of chitin with constitutively produced enzymes of M. anisopliae suggested that CDA along with chitosanase contributed significantly to chitin hydrolysis. Thus, chitin deacetylase was important in initiating pathogenesis of M. anisopliae softening the insect cuticle to aid mycelial penetration. Evaluation of CDA and chitinase activities in other isolates of Metarhizium showed that those strains had low chitinase activity but high CDA activity. Chemical assays of M. anisopliae cell wall composition revealed the presence of chitosan. CDA may have a dual role in modifying the insect cuticular chitin for easy penetration as well as for altering its own cell walls for defense from insect chitinase.  相似文献   

10.
Early on, we reported the partial purification of prophenoloxidase-activating proteinase-1 (PAP-1) from the tobacco hornworm, Manduca sexta [Proc. Natl. Acad. Sci. USA 95 (1998) 12220]. PAP-1 requires an auxiliary factor for generating active phenoloxidase (PO) [Insect Biochem. Mol. Biol. 33 (2003) 197; Insect Biochem. Mol. Biol. 34 (2004) 731]. To further characterize their roles in the proteolytic activation of prophenoloxidase (proPO), we purified PAP-1 to near homogeneity by hydroxylapatite, dextran sulfate, gel filtration, and lectin affinity chromatography. With 2.4 x 10(3)-fold purification and 20% yield, we obtained 63 microg PAP-1 from about 120 M. sexta prepupal cuticles (approximately 400 g). The purified glycoprotein (Mr=39,810+/-20; pI=5.6) had the highest amidase activity at pH 8.0 and a low salt concentration. The optimal conditions for proPO activation by PAP-1 and SPHs were: pH 8.0-8.4, PAP:SPH=1.5:1, and 0-10 degrees C for 40-50 min. While PAP-1 and SPHs are reasonably heat stable, PO activity generated after 1h incubation was lower at 20 or 30 degrees C than 0-10 degrees C because activated PO was unstable at a higher temperature. The KMs of PAP-1 toward IEARpNA and proPO were 201+/-18 microM and 16.6+/-3.0 microg/ml, respectively, and the absence of SPHs did not significantly affect KM for the synthetic substrate. PO activity and proPO cleavage were reduced in reaction mixtures containing the same amounts of proPO, PAP-1, and SPHs but increasing concentrations of NaCl. Ionic strength of the reaction buffer may reduce proPO-PAP-SPH interactions, proPO processing, and PO assembly.  相似文献   

11.
Glycosphingolipids (GSLs) have been implicated as playing major roles in cellular interactions and control of cell proliferation in muticellular organisms. Moreover GSLs and other sphingolipids such as sphingomyelins, ceramides and sphingosines serve a variety of roles in signal transduction. Hence, identification of structures of GSLs in different biota will shed light in understanding their physiological role. During this study, the major glycosphingolipid component present in the extracts of stage-12 and stage-17/18 metamorphosing adults of Manduca sexta was identified as mactosyl ceramide. We report the isolation of several ceramide disaccharides, a ceramide trisaccharide and a ceramide tetrasaccharide. The GSL structures were confirmed by high-resolution mass spectrometry and tandem mass spectrometry. The identity of the monosaccharides was proved using exoglycosidases. The predominant sphingosine chain-length varied from C-14 (tetradecasphing-4-enine) to C-16 (hexadecasphing-4-enine) in these GSLs. Sphingosines of both chain lengths were accompanied by their doubly unsaturated counterparts tetradecasphinga-4,6-diene and hexadecasphinga-4,6-diene. It is also interesting to note the presence of tetradecasphinganine and hexadecasphinganine in minute amounts in the form of a GSL in the extracts of M. sexta. The varying degrees of unsaturation in the sphingosine moiety of GSLs in M. sexta may be biologically significant in insect metamorphosis. The ceramide trisaccharides and ceramide tetrasaccharide belong to the arthro-series, The observation of fucose in the M. sexta GSLs is the first report of the presence of fucose in an arthroseries GSL.  相似文献   

12.
Hemocyte migration toward infection and wound sites is an essential component of insect defense reactions, although the biochemical signal mechanisms responsible for mediating migration in insect cells are not well understood. Here we report on the outcomes of experiments designed to test the hypotheses that (1) insect hemocytes are able to detect and migrate toward a source of N-formyl-Met-Leu-Phe (fMLP), the major chemotactic peptide from Escherichia coli and (2) that pharmaceutical modulation of eicosanoid biosynthesis inhibits hemocyte migration. We used primary hemocyte cultures prepared from fifth-instar tobacco hornworms, Manduca sexta in Boyden chambers to assess hemocyte migration toward buffer (negative control) and toward buffer amended with fMLP (positive control). Approximately 42% of negative control hemocytes migrated toward buffer and about 64% of positive control hemocytes migrated toward fMLP. Hemocyte migration was inhibited (by >40%) by treating hornworms with pharmaceutical modulators of cycloxygenase (COX), lipoxygenase and phospholipase A2 (PLA2) before preparing primary hemocyte cultures. The influence of the COX inhibitor, indomethacin, and the glucocorticoid, dexamethasone, which leads to inhibition of PLA2, was expressed in a dose-dependent way. The influence of dexamethasone was reversed by injecting arachidonic acid (precursor to eicosanoid biosynthesis) into hornworms before preparing primary hemocyte cultures. The saturated fatty acid, palmitic acid, did not reverse the inhibitor effect. These findings support both our hypotheses, first that insect hemocytes can detect and respond to fMLP, and second, that insect hemocyte migration is mediated by eicosanoids.  相似文献   

13.

Background

Metarhizium anisopliae is an important fungal biocontrol agent of insect pests of agricultural crops. Genomics can aid the successful commercialization of biopesticides by identification of key genes differentiating closely related species, selection of virulent microbial isolates which are amenable to industrial scale production and formulation and through the reduction of phenotypic variability. The genome of Metarhizium isolate ARSEF23 was recently published as a model for M. anisopliae, however phylogenetic analysis has since re-classified this isolate as M. robertsii. We present a new annotated genome sequence of M. anisopliae (isolate Ma69) and whole genome comparison to M. robertsii (ARSEF23) and M. acridum (CQMa 102).

Results

Whole genome analysis of M. anisopliae indicates significant macrosynteny with M. robertsii but with some large genomic inversions. In comparison to M. acridum, the genome of M. anisopliae shares lower sequence homology. While alignments overall are co-linear, the genome of M. acridum is not contiguous enough to conclusively observe macrosynteny. Mating type gene analysis revealed both MAT1-1 and MAT1-2 genes present in M. anisopliae suggesting putative homothallism, despite having no known teleomorph, in contrast with the putatively heterothallic M. acridum isolate CQMa 102 (MAT1-2) and M. robertsii isolate ARSEF23 (altered MAT1-1). Repetitive DNA and RIP analysis revealed M. acridum to have twice the repetitive content of the other two species and M. anisopliae to be five times more RIP affected than M. robertsii. We also present an initial bioinformatic survey of candidate pathogenicity genes in M. anisopliae.

Conclusions

The annotated genome of M. anisopliae is an important resource for the identification of virulence genes specific to M. anisopliae and development of species- and strain- specific assays. New insight into the possibility of homothallism and RIP affectedness has important implications for the development of M. anisopliae as a biopesticide as it may indicate the potential for greater inherent diversity in this species than the other species. This could present opportunities to select isolates with unique combinations of pathogenicity factors, or it may point to instability in the species, a negative attribute in a biopesticide.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-660) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
16.
Destruxins are secondary metabolites secreted by Metarhizium anisopliae [Y. Kodaira, Toxic substances to insects, produced by Aspergillus ochraceus and Oopsra destructor, Agric. Biol. Chem., 25 (1961) 261-262. D.W. Roberts, Toxins from the entomogenous fungus Metarhizium anisoplaie: Isolation from submerged cultures, J. Invertebr. Pathol., 14 (1969) 82-88. D.W. Roberts, Toxins from the entomogenic fungi in microbial control of pest and plant disease, Academic press, New York, 1981, pp441-464.]. In recent research, other than being used as insecticides, destruxins exhibited great potential in therapeutical applications such as antitumor, antivirus, and animal cell immunization effectiveness, etc. In this study, the conformations purified destruxins were determined by circular dichroism (CD). The results indicated that these cyclic peptides have the type I beta-turn conformation. In addition, different types of destruxins exhibited different CD spectra in acetonitrile. Therefore, these characters can be used as fingerprints to identify each type of destruxin. To further investigate the interactions among destruxins, various combinations of destruxins in 10 mM phosphate-buffered saline (PBS) were also studied by CD. The results strongly suggested that destruxins might work independently in vivo. To our knowledge, this is the first report presenting the CD analysis of purified destruxins.  相似文献   

17.
The eye imaginal disc of Manduca sexta is created early in the final larval instar from the adult eye primordium, which is composed of fully differentiated cells of the larval head capsule epidermis. Concomitant with the down-regulation of the larval epidermal program, expression of broad, a marker of pupal commitment, is activated in the primordium. The cells then detach from the cuticle, fold inward, and begin to proliferate at high levels to produce the inverted, eye imaginal disc. These and other events that begin on the first day of the final larval instar appear to mark the initiation of metamorphosis. Little is known about the endocrine control of the initiation of metamorphosis in any insect. The hemolymph titer of juvenile hormone (JH) declines to low levels during this period and the presence of JH is sufficient to repress development in cultured eye primordia. However, maintenance of JH at high levels in vivo by treatment with long-lasting JH mimics has no apparent effect on early steps in eye imaginal disc development. We discuss our findings in the context of the endocrine control of metamorphosis. The initiation of metamorphosis in Manduca, and perhaps a wide range of insect species, appears to involve the overcoming of JH repression by an unidentified, nutrient-dependent, hormonal factor.  相似文献   

18.
During oviposition, the parasitoid wasp Cotesia congregata injects polydnavirus, venom, and parasitoid eggs into larvae of its lepidopteran host, the tobacco hornworm, Manduca sexta. Polydnaviruses (PDVs) suppress the immune system of the host and allow the juvenile parasitoids to develop without being encapsulated by host hemocytes mobilized by the immune system. Previous work identified a gene in the Cotesia rubecula PDV (CrV1) that is responsible for depolymerization of actin in hemocytes of the host Pieris rapae during a narrow temporal window from 4 to 8h post-parasitization. Its expression appears temporally correlated with hemocyte dysfunction. After this time, the hemocytes recover, and encapsulation is then inhibited by other mechanism(s). In contrast, in parasitized tobacco hornworm larvae this type of inactivation in hemocytes of parasitized M. sexta larvae leads to irreversible cellular disruption. We have characterized the temporal pattern of expression of the CrV1-homolog from the C. congregata PDV in host fat body and hemocytes using Northern blots, and localized the protein in host hemocytes with polyclonal antibodies to CrV1 protein produced in P. rapae in response to expression of the CrV1 protein. Host hemocytes stained with FITC-labeled phalloidin, which binds to filamentous actin, were used to observe hemocyte disruption in parasitized and virus-injected hosts and a comparison was made to hemocytes of nonparasitized control larvae. At 24h post-parasitization host hemocytes were significantly altered compared to those of nonparasitized larvae. Hemocytes from newly parasitized hosts displayed blebbing, inhibition of spreading and adhesion, and overall cell disruption. A CrV1-homolog gene product was localized in host hemocytes using polyclonal CrV1 antibodies, suggesting that CrV1-like gene products of C. congregata's bracovirus are responsible for the impaired immune response of the host.  相似文献   

19.
Less than 1% of an ingested inoculum of the pathogenic fungus Metarhizium anisopliae was retained for long enough (ca. 24 h) in the gut of the desert locust, Schistocerca gregaria, for germination and penetration to have occurred. The residual inoculum did not initiate an infection in guts of fed conventional or axenic locusts. However, symptoms of mycosis (hyphal bodies in the haemolymph, fungal penetration of the hindgut intima and epithelium, tetanic paralysis) were consistently observed in axenic but not conventional locusts which were starved post-inoculation.It is concluded that the antifungal toxin produced by the gut bacteria defends the desert locust against gut invasion by Metarhizium anisopliae during periods of starvation when the physical defences, prominent in fed insects, are less apparent.  相似文献   

20.
Immune defences are an important component of fitness. Yet susceptibility to pathogens is common, suggesting the presence of ecological and evolutionary limitations on immune defences. Here, we use structural equation modelling to quantify the direct effects of resource quality and selection history, and their indirect effects mediated via body condition prior to an immune challenge on encapsulation and melanization immune defences in the tobacco hornworm, Manduca sexta. We also investigate allocation trade-offs among immune defences and growth rate following an immune challenge. We found considerable variation in the magnitude and direction of the direct effects of resource quality and selection history on immune defences and their indirect effects mediated via body condition and allocation trade-offs. Greater resource quality and evolutionary exposure to pathogens had positive direct effects on encapsulation and melanization. The indirect effect of resource quality on encapsulation mediated via body condition was substantial, whereas indirect effects on melanization were negligible. Individuals in better condition prior to the immune challenge had greater encapsulation; however, following the immune challenge, greater encapsulation traded off with slower growth rate. Our study demonstrates the importance of experimentally and analytically disentangling the relative contributions of direct and indirect effects to understand variation in immune defences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号