首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initial rates of peptide-bond synthesis catalyzed by poly(ethylene glycol)-modified chymotrypsin in benzene were determined using high-performance liquid chromatography. Enzymatic synthesis of N-benzoyl-L-tyrosyl-L-phenylalanine amide from N-benzoyl-L-tyrosine ethyl ester and L-phenylalanine amide was found to obey Michaelis-Menten kinetics an to be consistent with a ping-pong mechanism modified by a hydrolytic branch. The catalytic activity of modified chymotrypsin was dependent on both water concentration and type of organic solvent, the highest synthesis rate being obtained in toluene. Since the chymotrypsin specificity in the organic phase was actually altered, the enzyme's apparent kinetic parameters were determined for different substrates and compared to those obtained with other serine proteases in benzene. Both N-benzoyl-L-tyrosine ethyl ester and N-alpha-benzoyl-L-lysine methyl ester were comparable acyl donors in benzene and the (kcat/Km)app value of modified chymotrypsin was only 10-fold smaller than that obtained with poly(ethylene glycol)-modified trypsin in the synthesis of N-alpha-benzoyl-L-lysyl-L-phenylalanine amide. The change in chymotrypsin specificity was also confirmed through the binding of trypsin inhibitors in benzene. The overall results suggest that hydrophobic bonding between the enzyme and its substrate should not be taken into account during catalysis in the organic phase. In general, if hydrophobic interactions are involved in the binding of substrates to the active site in aqueous media, the replacement of water by hydrophobic solvents will induce some change in enzyme specificity. Moreover, secondary residues of enzyme-binding sites may also exert a significant influence on specificity since, as observed in this study, chymotrypsin exhibited high affinity for cationic substrates and cationic inhibitors as well in apolar solvents.  相似文献   

2.
Chymotrypsin modified with polyethylene glycol was successfully used for peptide synthesis in organic solvents. The benzene-soluble modified enzyme readily catalyzed both aminolysis of N-benzoyl-L-tyrosine p-nitroanilide and synthesis of N-benzoyl-L-tyrosine butylamide in the presence of trace amounts of water. A quantitative reaction was obtained when either hydrophobic or bulky amides of L- as well as D-amino acids were used as acceptor nucleophiles, while almost no reaction occurred with free amino acids or ester derivatives. The acceptor nucleophile specificity of modified chymotrypsin as a catalyst in the formation of both amide and peptide bonds in organic solvents was quite comparable to that in aqueous solution as well as to that of the leaving group in hydrolysis reactions. By contrast, the substrate specificity of modified chymotrypsin in organic solvents was different from that in water since arginine and lysine esters were found to be as effective as aromatic amino acids to form the acyl-enzyme with subsequent synthesis of a peptide bond.  相似文献   

3.
The preparation and application of a new linker for the synthesis of peptide amides using a modified Fmoc-method is described. The new anchor group was developed based on our experience with 4,4'-dimethoxybenzhydryl (Mbh)-protecting group for amides. Lability towards acid treatment was increased dramatically and results in an easy cleavage procedure for the preparation of peptide amides. The synthesis of N-9-fluorenylmethoxycarbonyl- ([5-carboxylatoethyl-2.4-dimethoxyphenyl)- 4'-methoxyphenyl]-methylamin is reported in detail. This linker was coupled to a commercially available aminomethyl polystyrene resin. Peptide synthesis proceeded smoothly using HOOBt esters of Fmoc-amino acids. Release of the peptide amide and final cleavage of the side chain protecting groups was accomplished by treatment with trifluoroacetic acid-dichloromethane mixtures in the presence of scavengers. The synthesis of peptide amides such as LHRH and C-terminal hexapeptide of secretin are given as examples.  相似文献   

4.
The nonapeptide fragment of the HLA-DR molecule, located in the exposed loop of the beta chain (164-172) and having the sequence VPRSGEVYT, suppresses the immune response. On the basis of the three-dimensional structure of the HLA-DR superdimer, we designed new dimeric analogs in which the VPRSGEVYT peptides are linked through their N-termini by poly(ethylene glycol) linkers of different lengths and are able to mimic the dimeric nature of the immunosuppressive fragments of HLA class II molecules. The analogs were synthesized using standard solid-phase peptide synthesis protocols. The dimerization was achieved by cross-linking the N-terminal positions of the peptides, attached to an MBHA resin, with alpha,omega-bis(acetic acid) poly(ethylene glycol), activated by esterification with pentafluorophenol. Our results demonstrate that the amino-terminal dimerization of the peptide results in enhanced immunosuppressive activity and that the potency of the conjugates depends on the length of the poly(ethylene glycol) linker. MS/MS analysis of the obtained dimeric peptides is also presented.  相似文献   

5.
Polyethylene glycol conjugates with linkers of varying acid-sensitivity were prepared by reacting five maleimide derivatives of daunorubicin containing an amide bond (1) or acid-sensitive carboxylic hydrazone bonds (2-5) with alpha-methoxy-poly(ethylene glycol)-thiopropionic acid amide (MW 20000) or alpha,omega-bis-thiopropionic acid amide poly(ethylene glycol) (MW 20000). The polymer drug derivatives were designed to release daunorubicin inside the tumor cell by acid-cleavage of the hydrazone bond after uptake of the conjugate by endocytosis. In subsequent cell culture experiments, the order of antitumor activity of the PEG daunorubicin conjugates correlated with their acid-sensitivity as determined by HPLC (cell lines: BXF T24 bladder carcinoma and LXFL 529L lung cancer cell line; assay: propidium iodide fluorescence assay). The acid-sensitivity of the link between PEG and daunorubicin is therefore an important parameter for in vitro efficacy.  相似文献   

6.
Bombesin has been synthesized by the continuous flow solid-phase procedure on the derivatized Kieselguhr-supported polydimethylacrylamide resin. Preformed Fmoc-amino acid symmetrical anhydrides (Met, Leu, and Arg) and Fmoc-amino acid active esters were used for amine acylation. The Mtr and the Pmc groups have been alternatively used for masking the side chain function of Arg-3. The progress of the synthesis was monitored by different analytical methods including quantitative solid-phase Edman degradation. Cleavage from the resin and simultaneous formation of the C-terminal amide function were achieved with a methanolic ammonia solution yielding indistinguishable crude peptides which have been purified by HPLC and fully characterized. Preliminary pharmacological experiments indicated that the activity of the synthetic peptides is similar to that previously measured for other synthetic bombesins. For comparison bombesin has also been prepared by solid-phase synthesis on 4-methyl benhydrylamine resin using the Boc chemistry. The results of the two strategies are discussed and compared.  相似文献   

7.
The synthesis of oligonucleotides on poly(ethylene glycol)-based (ChemMatrix) supports was studied. Results show that oligonucleotides can be indeed prepared in good yields using slightly modified synthesis cycles and automated DNA synthesizers. The use of these supports for the synthesis of oligonucleotide-peptide conjugates and for the ligation of oligonucleotides using Cu(+)-catalyzed cycloadition reactions is reported. Moreover, these supports can be used for the preparation of oligonucleotides in anhydrous solvents, followed by hybridization of the complementary sequences in aqueous buffers.  相似文献   

8.
In this paper, the synthesis of novel divalent cationic lipids with poly(ethylene glycol) segments is described. The lipids consist of an unsaturated double-chain hydrophobic moiety based on 3, 4-dihydroxy benzoic acid, attached to a hydrophilic poly(ethylene glycol) spacer which contains a divalent cationic end group. As poly(ethylene glycol) spacers monodisperse triethylene glycol and telechelic poly(ethylene glycol)s with an average degree of polymerization of 9, 23, and 45 were used. The divalent cationic end group was attached by coupling a protected dibasic amino acid to the PEG spacer and following cleavage of the protecting groups. These novel class of cationic lipids is of particular interest for nonviral gene delivery applications.  相似文献   

9.
Immobilized metal ion affinity partitioning of erythrocytes from different species is described. We have explored the affinity between transition metal chelates and metal-binding sites situated on the cell surface by partitioning in aqueous two-phase system composed of poly(ethylene glycol) and dextran. Soluble metal-chelate-poly(ethylene glycol) was prepared by fixing metal ions to poly(ethylene glycol) via the covalently bonded chelator, iminodiacetic acid. The partitioning behaviour of erythrocytes in systems at different concentrations of the ligand was tested. The copper-chelate-poly(ethylene glycol) was quite effective in the affinity extraction of human and rabbit erythrocytes, while the zinc-chelate-poly(ethylene glycol) displayed significant affinity only to the rabbit cells. Furthermore, the influence of various effectors such as imidazole, sialic acid on immobilized metal ion affinity partitioning of erythrocytes was examined.  相似文献   

10.
The carboxyl terminal dipeptide amide, Fmoc-Asp-Phe-NH2, of gastrin and cholecystokinin (CCK) has been attached in high yield through its free side chain carboxyl group to the acid labile 2-chlorotrityl resin. The obtained peptide resin ester has been applied in the solid phase synthesis of partially protected (Leu15)-gastrin I utilising Fmoc-amino acids. Quantitative cleavage of this peptide from resin, with the t-butyl type side chain protection intact is achieved using mixtures of acetic acid/trifluoroethanol/dichloromethane. Under the same conditions complete detritylation of the tyrosine phenoxy function occurs simultaneously. Thus, the solid-phase synthesis of peptides selectively deprotected at the side chain of tyrosine is rendered possible by the use of 2-chlorotrityl resin and Fmoc-Tyr(Trt)-OH. The efficiency of this approach has been proved by the subsequent high-yield synthesis of three model peptides and the CCK-octapeptide.  相似文献   

11.
Penicillin acylase (PA) is used in the industrial production of 6-amino penicillanic acid (6-APA). However, by proper control of reaction medium, the enzyme can be used in the reverse synthesis of β-lactam antibiotics from the corresponding β-lactam nuclei and suitable acyl donors. Under thermodynamically controlled strategy, the use of organic cosolvents can favor synthesis over hydrolysis by lowering water activity and favoring the non-ionic reactive species. Under kinetically controlled strategy using activated acyl donors, organic solvents can favor synthesis by depressing hydrolytic reactions. Results are presented on the synthesis of ampicillin from phenylglycine methyl ester and 6-APA with immobilized Escherichia coli PA in the presence of organic cosolvents. Several solvents were tested in terms of enzyme stability and solubility of substrates. Ethylene glycol, glycerol, 1–2 propanediol and 1–3 butanediol were selected accordingly and ampicillin synthesis was performed in all of them. Best results in terms of yield and productivity were obtained with ethylene glycol, with which further studies were conducted. Variables studied were enzyme to limiting substrate ratio, acyl acceptor to acyl donor ratio, organic solvent concentration, pH and temperature. Experimental design based on a two-level fractional factorial design was conducted. pH was determined as the most sensitive variable and was further optimized. The best conditions for ampicillin synthesis in terms of productivity, within the range of values studied for those variables, were pH 7.4, 28°C, 36 US PA/mmol 6-APA, 3 mol PGME/mol 6-APA and 45 % (v/v) ethylene glycol concentration. Productivity was 7.66 mM ampicillin/h, which corresponds to a specific productivity of 7.02 μmol ampicillin/h US at 55 % yield. Productivity was lower than in buffer but product yield was higher because of the much lower relative hydrolysis rates.  相似文献   

12.
The nonapeptide fragment of the HLA‐DR molecule, located in the exposed loop of the alpha‐chain (164–172), having the VPRSGEVYT sequence, suppresses the immune response. Based on the three‐dimensional structure of the HLA‐DR superdimer, we designed a new cyclodimeric analog in which the two parallel peptide chains of VPRSGEVYT sequence are linked through their C‐termini by spacer of (Gly5)2‐Lys‐NH2 and the N‐termini are also linked by poly(ethylene glycol). The (VPRSGEVYTG5)2K‐resin analog was synthesized using solid‐phase peptide synthesis protocols. The cyclization was achieved by cross‐linking the N‐terminal positions of the dimeric peptide, attached to a MBHA resin, with alpha, omega‐bis (acetic acid) poly(ethylene glycol), activated by esterification with pentafluorophenol. Our results demonstrate that the cyclodimerization of VPRSGEVYT results in enhanced immunosuppressive activity of the peptide. Mass spectrometry fragmentation analysis of the obtained cyclodimeric peptide is also presented. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Polymeric biomaterials have played an integral role in tissue engineering, biomedical devices, and targeted drug delivery. Block copolymers are especially important because their physical and chemical properties can be controlled by adjusting the ratio, size, and type of constituting blocks. Herein, the synthesis and characterization of diblock copolymers composed of poly(ethylene glycol) and a polycarbonate based on the metabolic intermediate, dihydroxyacetone, are reported. The length of the dihydroxyacetone-based block was controlled by adjusting the reactant feed ratios and initiator injection conditions. Intermediates and final products were characterized via (1)H NMR, GPC, DSC, TGA, and diffusion-ordered NMR spectroscopy. The dihydroxyacetone-based hompolymer is insoluble in water and most organic solvents, but is hydrophilic in nature. This, coupled with poly(ethylene glycol)'s solubility characteristics, allows the block copolymer to form nanoparticles in aqueous and organic anti-solvents. Dynamic light scattering and TEM results indicated the formation of spherical nanoparticles.  相似文献   

14.
Summary New ligands for major histocompatibility complex (MHC) class I molecules were prepared using a flexible automated synthesis of oligocarbamates. An efficient solution-phase synthesis was found for Fmoc-amino alcohols which are required as building blocks. The biological activity of the oligomeric peptidomimetics was demonstrated in a stabilizing assay with MHC class I presenting cells.  相似文献   

15.
New ligands for major histocompatibility complex (MHC) class I molecules were prepared using a flexible automated synthesis of oligocarbamates. An efficient solution-phase synthesis was found for Fmoc-amino alcohols which are required as building blocks. The biological activity of the oligomeric peptidomimetics was demonstrated in a stabilizing assay with MHC class I presenting cells.  相似文献   

16.
This paper discusses the solid state and melt nanoscale structure of a series of novel poly(ethylene glycol) (PEG) hybrid di- and triblock copolymers, which contain amphiphilic beta-strand peptide sequences. The block copolymers have been prepared via solid-phase synthesis, affording perfectly monodisperse peptide segments with a precisely defined alpha-amino acid sequence. Attenuated total reflection Fourier transform infrared spectroscopy and X-ray scattering experiments indicate that the self-assembly properties of the peptide sequences are retained upon conjugation to PEG and mediate the formation of an ordered superstructure consisting of alternating PEG layers and peptide domains with an highly organized antiparallel beta-sheet structure. The results suggest that combination of biological structural motifs with synthetic polymers may be a versatile strategy for the development of novel self-assembled materials with complex internal structures and the potential to interface with biology.  相似文献   

17.
Zeng F  Lee H  Chidiac M  Allen C 《Biomacromolecules》2005,6(4):2140-2149
Novel amphiphilic six-arm star diblock copolymers based on biocompatible and biodegradable poly(delta-valerolactone) (PVL) and methoxy poly(ethylene glycol) (MePEG) were synthesized by a two-step process. First, the hydrophobic star-shaped PVL with hydroxyl terminated functional groups was synthesized using a multifunctional alcohol, dipentaerythritol (DPE), as the initiator and fumaric acid as the catalyst. The amphiphilic six-arm star copolymer of poly(delta-valerolactone)-b-methoxy poly(ethylene glycol), (PVL-b-MePEG)(6), was then synthesized by coupling the hydroxyl terminated six-arm PVL homopolymer with alpha-methoxy-omega-chloroformate-poly(ethylene glycol) (MePEG-COCl). (1)H NMR and GPC analyses confirmed the successful synthesis of star-shaped copolymers with predicted compositions and narrow molecular weight distributions. DSC analysis revealed that the glass transition temperatures of the star PVL homopolymers with M(n) between 5000 and 49 000 are not dependent on their molecular weights, whereas the melting temperatures of both the PVL homopolymers and the amphiphilic (PVL-b-MePEG)(6) copolymers increase with an increase in the PVL molecular weight. Micelles were prepared from the (PVL-b-MePEG)(6) copolymers via the dialysis method and found to have effective mean diameters ranging from 10 to 45 nm, depending on the copolymer composition. In addition, the (PVL-b-MePEG)(6) copolymers having lower PVL content were found to form micelles with a narrow monomodal size distribution, whereas the copolymers having higher PVL content tended to form aggregates with a bimodal size distribution. The noncytotoxicity of the copolymers was also confirmed in CHO-K1 fibroblast cells using a cell viability assay, indicating that the (PVL-b-MePEG)(6) copolymers are suitable for biomedical applications such as drug delivery.  相似文献   

18.
Polyamidoamine dendrimers having poly(ethylene glycol) grafts were designed as a novel drug carrier which possesses an interior for the encapsulation of drugs and a biocompatible surface. Poly(ethylene glycol) monomethyl ether with the average molecular weight of 550 or 2000 was combined to essentially every chain end of the dendrimer of the third or fourth generation via urethane bond. The poly(ethylene glycol)-attached dendrimers encapsulating anticancer drugs, adriamycin and methotrexate, were prepared by extraction with chloroform from mixtures of the poly(ethylene glycol)-attached dendrimers and varying amounts of the drugs. Their ability to encapsulate these drugs increased with increasing dendrimer generation and chain length of poly(ethylene glycol) grafts. Among the poly(ethylene glycol)-attached dendrimers prepared, the highest ability was achieved by the dendrimer of the fourth generation having the poly(ethylene glycol) grafts with the average molecular weight of 2000, which could retain 6.5 adriamycin molecules or 26 methotrexate molecules/dendrimer molecule. The methotrexate-loaded poly(ethylene glycol)-attached dendrimers released the drug slowly in an aqueous solution of low ionic strength. However, in isotonic solutions, methotrexate and adriamycin were readily released from the poly(ethylene glycol)-attached dendrimers.  相似文献   

19.
The hydration properties of phosphatidylcholine (PC)/water dispersions on the addition of poly(ethylene glycol) were studied by means of 2H-NMR. The quadrupole splittings and their temperature dependences correspond to measurements of PC/water dispersions at low water content. It is concluded that the bound water is partly extracted by poly(ethylene glycol) but the binding properties of the water in the inner hydration shell of about five water molecules are not changed. The ability of some phospholipid/water dispersions to undergo phase transitions to nonlamellar structures upon dehydration is discussed. Dipalmitoylphosphatidylcholine (DPPC) and egg phosphatidylcholine do not form nonlamellar structures on addition of purified poly(ethylene glycol), as was demonstrated by means of 31P-NMR. Poly(ethylene glycol) decreases the polarity of the aqueous phase and the partition of hydrophobic molecules between the membrane and the external phase is changed. This was demonstrated using the excimer fluorescence of pyrene in a ghost suspension. It is suggested that the changes in polarity and hydration on the addition of poly(ethylene glycol) can contribute to the alterations in the membrane surface observed under conditions of membrane contact and fusion.  相似文献   

20.
The viscosity dependence of enzymatic catalysis was examined in subtilisin BPN' catalyzed hydrolysis of N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide and N-succinyl-Ala-Ala-Pro-Phe-thiobenzyl ester. The viscosity of the reaction medium was varied by added glycerol, ethylene glycol, sucrose, glucose, fructose, poly(ethylene glycol) and Ficoll-400. Responses of the Michaelis-Menten parameters associated with hydrolysis were calculated from data obtained by spectrophotometric techniques. The reactions with these two substrates have catalytic rates well below the diffusion-controlled limit and thus enable us to study the viscosity effects on catalytic steps of non-transport nature. It was found that the Km values for both amide and ester reactions remained relatively independent of cosolvents. On the other hand, while the kcat values for amide were insensitive to cosolvents, those for ester were substantially attenuated except in the case of poly(ethylene glycol). The observed rate attenuations cannot be explained by changes in proton activity, water activity, dielectric constant of the reaction medium or shifts of any kinetically important pKa. Instead, the results can be adequately described by microviscosity effects on the unimolecular deacylation step with a coupling constant of 0.65 +/- 0.11. In addition, the different viscosity dependence in the acylation vs deacylation step can be rationalized in terms of fluctuation-dependent chemical dynamics of proton transfers in the context of the Bogris-Hynes model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号