首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare autosomal dominant neurodegenerative disease characterized by various combinations of ataxia, choreoathetosis, myoclonus, epilepsy and dementia as well as various ages of onset. We have identified a specific unstable trinucleotide repeat expansion in a gene on the short arm of chromosome 12 as the pathogenic mutation for DRPLA. We investigated how the degree of the expansion of the CAG repeat affects the clinical manifestations of DRPLA. The sizes of the expanded alleles were well correlated with the ages of onset (r = −0.6955, P < 0.001). Patients with progressive myoclonus epilepsy (PME) phenotype had larger expansions (62–79 repeats) and earlier ages of onset (onset before age 20). Furthermore, most of the patients with PME phenotype inherited their expanded alleles from their affected fathers. On the other hand, patients with non-PME phenotype showed later ages of onset (onset after age 20) and smaller expansions (54–67 repeats). When ages of onset of each clinical symptom are compared with sizes of the CAG repeat, there is again a remarkably high correlation of the sizes of CAG repeat with each of the clinical symptoms. Thus the wide variation in clinical manifestations of DRPLA can now be clearly explained based on the degree of CAG repeat expansion, which strongly indicates that the expanded alleles are intimately involved in the neuronal degeneration in dentatofugal and pallidofugal systems.  相似文献   

2.
Molecular pathology of dentatorubral-pallidoluysian atrophy.   总被引:1,自引:0,他引:1  
Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant disorder characterized clinically by myoclonus, epilepsy, cerebellar ataxia, choreoathetosis and dementia. Cardinal pathological features of DRPLA are a combined degeneration of both the dentatorubral and the pallidoluysian systems. Although the early sporadic cases were reported by Western neuropathologists, a strong heritability and an age of onset-dependent variability of the clinical features were carefully deduced by Japanese clinicians. The disease is fairly common in Japan, but extremely rare in Caucasians. Since the gene was identified in 1994, DRPLA is known as one of the CAG repeat expansion diseases, in which the responsible gene is located on chromosome 12p and its product is called atrophin 1. DRPLA shows prominent 'anticipation', which is genetically clearly explained by a marked instability of the expanded CAG repeat length during spermatogenesis. Moreover, the instability of the CAG repeat length also seems to occur in the somatic cells, resulting in 'somatic mosaicism'. Possible mechanism(s) underlying the neuronal cell death in DRPLA are discussed in terms of molecular pathological points of view.  相似文献   

3.
4.
Genetic anticipation – increasing severity and a decrease in the age of onset with successive generations of a pedigree – is clearly present in autosomal dominant cerebellar ataxia (ADCA). Anticipation is correlated with expansion of the CAG/CTG repeat sequence to sizes above those in the normal range through the generations of a pedigree. Genetic heterogeneity has been demonstrated for ADCA, with four cloned genes (SCA1, SCA2, SCA3/MJD, and SCA6) and three mapped loci (SCA4, SCA5 and SCA7). Another related dominant ataxia, dentatorubral-pallidoluysian atrophy (DRPLA), presents anticipation with CAG/CTG repeat expansions. We had previously analysed ADCA patients who had not shown repeat expansions in cloned genes for CAG/CTG repeat expansions by the repeat expansion detection method (RED) and had detected expansions of between 48 and 88 units in 17 unrelated familial cases. We present here an analysis of 13 genes and expressed sequence tags (ESTs) containing 10 or more CAG/ CTG repeat sequences selected from public databases in the 17 unrelated ADCA patients. Of the 13 selected genes and ESTs, 9 were found to be polymorphic with heterozygosities ranging between 0.09 and 0.80 and 2 to 17 alleles. In ADCA patients none of the loci showed expansions above the normal range of the CAG/CTG repeat sequences, excluding them as the mutation causing ADCA. Received: 28 May 1997 / Accepted: 30 June 1997  相似文献   

5.
Dentatorubral and pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder with expansion of trinucleotide CAG repeats in the coding region of the gene. Expansion of the repeat tract beyond the normal range produces gene products with extended polyglutamine tracts. In this study, we analyzed the distribution of the CAG repeats in the DRPLA alleles in a normal Taiwanese population. We observed 15 different alleles and found that the range of the CAG repeat number was from 7-21. The most frequent allele contained 15 CAG repeats that represented 20% of the total analyzed alleles, followed by the 17 repeats (15.8%). The heterozygosity rate of this locus was 88%. Twelve parents-to-children transmissions of the DRPLA alleles in a Machado-Joseph disease family appeared to be normal without any alteration of the CAG repeat numbers. Phenotypes of DRPLA overlapped those of autosomal dominant cerebellar ataxia (ADCA). In order to identify DRPLA patients in Taiwan, we screened six autosomal dominant cerebellar ataxia patients without expansion in known spinocerebellar ataxia genes. All six patients had the repeat numbers within the normal range; thus, the possibility of DRPLA could be excluded.  相似文献   

6.
The dominant cerebellar ataxias (ADCAs) represent a clinically and genetically heterogeneous group of disorders linked by progressive deterioration in balance and coordination. The utility of genetic classification of the ADCAs has been highlighted by the striking variability in clinical phenotype observed within families and the overlap in clinical phenotype observed between those with different genotypes. The recent demonstration that spinocerebellar ataxia type 2 (SCA2) is caused by a CAG repeat expansion within the ataxin-2 gene has allowed us to determine the frequency of SCA2 compared with SCA1, SCA3/Machado-Joseph disease (MJD), and dentatorubropallidoluysian atrophy (DRPLA) in patients with sporadic and inherited ataxia. SCA2 accounts for 13% of patients with ADCA (without retinal degeneration), intermediate between SCA1 and SCA3/MJD, which account for 6% and 23%, respectively. Together, SCA1, SCA2, and SCA3/MJD constitute >40% of the mutations leading to ADCA I in our population. No patient without a family history of ataxia, or with a pure cerebellar or spastic syndrome, tested positive for SCA1, SCA2, or SCA3. No overlap in ataxin-2 allele size between normal and disease chromosomes, or intermediate-sized alleles, were observed. Repeat length correlated inversely with age at onset, accounting for approximately 80% of the variability in onset age. Haplotype analysis provided no evidence for a single founder chromosome, and diverse ethnic origins were observed among SCA2 kindreds. In addition, a wide spectrum of clinical phenotypes was observed among SCA2 patients, including typical mild dominant ataxia, the MJD phenotype with facial fasciculations and lid retraction, and early-onset ataxia with a rapid course, chorea, and dementia.  相似文献   

7.
Summary Two female patients of German origin, aged 38 and 21 years, with myoclonus epilepsy and cerebellar ataxia, but without dysmorphic signs and dementia, were found to excrete normal amounts of sialyl oligosaccharides in their urine. The younger patient showed cherry red spots in her ocular fundi. The older patient had a brother with an autopsy-proven neuronal storage disease compatible with sialidosis, and in her rectal biopsy lamellar inclusion bodies were detected. Enzyme assays in cultured fibroblasts of both patients revealed a profound but incomplete deficiency of oligosaccharide sialidase activity and normal -galactosidase activity. Adult sialidosis was diagnosed in both patients. In their fibroblasts, moderate elevations of bound sialic acid could also be measured. The small residual sialidase activity, which in the older patient had a normal KM value, is considered responsible for the late onset and slow clinical course of the disease. It is concluded that in adult sialidosis the extraneural storage process can be difficult to demonstrate in terms of metabolite accumulation or excretion during the course of intraneuronal storage.  相似文献   

8.
Summary Three families with at least three generations of family members affected with spino-cerebellar ataxia transmitted in a dominant fashion were studied. In each family every available member, above the lowest age at onset observed in that family, was subject to a thorough clinical investigation and blood was sampled for HLA,A,B and C-typing. In all three families the affected members had signs which were characteristic for cerebellar ataxia, without spasticity or dementia. In two families the mean age at onset was in accordance with the literature, viz. in the fourth and fifth decade, while in the third family mean age at onset was over 50 years. In the two pedigrees with the usual age at onset there was evidence of linkage between the disease and the HLA-system with a combined lod score of 1.499 at a recombination fraction of 0.05 for males. The third pedigree gave negative lod scores for linkage between HLA and the disease locus for both males and females but in this family also the high age at onset was indicative of genetic heterogeneity.  相似文献   

9.
Summary The syndrome of myoclonus, epilepsy, and mental deficiency is observed in a number of distinct nosologic entities differing with respect to clinical course, (-) pathologic, and biochemical findings. Genetically, the heterogeneity within this group of disorders is shown by the occurrence of autosomal recessive and dominant forms with incomplete penetrance. In this paper we report on a sibship with at least four affected males suffering from progressive myoclonus epilepsy, ataxia, and mental deterioration. The syndrome is probably X-linked, as suggested by the maternal transmission and mild, variable symptoms in some female carriers. In a survey of the literature we have found another pedigree suggesting X-linked inheritance of this variant of progressive myoclonus epilepsy.  相似文献   

10.
Dentato-rubro-pallido-luysian atrophy (DRPLA) is considered to be rare in Europe. We describe a Danish family in which affected individuals in at least three generations have been diagnosed as suffering from Huntington's disease. Because analysis of the Huntingtin gene revealed normal alleles and various of the patients had seizures, we analysed the B37 gene and found significantly elongated CAG repeats as have been reported in DRPLA. Affected individuals with almost identical repeat lengths presented very different symptoms. Both expansion and contraction in paternal transmission was encountered.  相似文献   

11.
Gerstmann-Sträussler-Scheinker disease (GSS) with the P102L mutation in PRNP gene is characterized with progressive cerebellar dysfunction clinically and PrPSc plaques neurologically. Due to the cerebellar ataxia in the early stage, GSS P102L is often misdiagnosed as other neurodegenerative disorders. We presented here a 49-year-old female patient with proven P102L PRNP mutation, and three heterologous mutations in hereditary ataxias associated gene SYNE1, including p.V3643L, p.M3376V and p.T2860A. The patient appeared progressive unsteady gait in early stage and developed the Creutzfeldt-Jacob disease (CJD) – associated clinical manifestations, including progressive dementia, myoclonus, pyramidal and extrapyramidal signs. She is still alive but with akinetic mutism 21 months after onset. Observation of intense signal changes in cortical regions (cortical ribboning) in diffusion weighted imaging (DWI) MRI scanning and positive protein 14-3-3 in cerebrospinal fluid (CSF) proposed the diagnosis of sporadic CJD. The final diagnosis of P102L GSS was made after PRNP sequencing.  相似文献   

12.
Disease-causing mutations have been identified in various entities of autosomal dominant ataxia and in Friedreich's ataxia. However, no molecular pathogenic factor is known to cause idiopathic cerebellar ataxias. We investigated the CAG/CTG trinucleotide repeats causing spinocerebellar ataxia types 1, 2, 3, 6, 7, 8 and 12, and the GAA repeat of the frataxin gene in 124 patients apparently suffering from idiopathic sporadic ataxia, including 20 patients with the clinical diagnosis of multiple system atrophy. Patients with a positive family history, a typical Friedreich phenotype, or symptomatic ataxia were excluded. Genetic analyses uncovered the most common Friedreich mutation in 10 patients with an age at onset between 13 and 36 years. The SCA6 mutation was present in nine patients with disease onset between 47 and 68 years of age. The CTG repeat associated with SCA8 was expanded in three patients. One patient had SCA2 attributable to a de novo mutation from a paternally transmitted, intermediate allele. We did not identify the SCA1, SCA3, SCA7 or SCA12 mutation in idiopathic sporadic ataxia patients. No trinucleotide repeat expansion was detected in the MSA subgroup. This study has revealed the genetic basis in 19% of apparently idiopathic ataxia patients. SCA6 is the most frequent mutation in late onset cerebellar ataxia. The frataxin trinucleotide expansion should be investigated in all sporadic ataxia patients with onset before age 40, even when the phenotype is atypical for Friedreich's ataxia.  相似文献   

13.
Progressive myoclonus epilepsy (PME) is a syndrome characterized by myoclonic seizures (lightning-like jerks), generalized convulsive seizures, and varying degrees of neurological decline, especially ataxia and dementia. Previously, we characterized three pedigrees of individuals with PME and ataxia, where either clinical features or linkage mapping excluded known PME loci. This report identifies a mutation in PRICKLE1 (also known as RILP for REST/NRSF interacting LIM domain protein) in all three of these pedigrees. The identified PRICKLE1 mutation blocks the PRICKLE1 and REST interaction in vitro and disrupts the normal function of PRICKLE1 in an in vivo zebrafish overexpression system. PRICKLE1 is expressed in brain regions implicated in epilepsy and ataxia in mice and humans, and, to our knowledge, is the first molecule in the noncanonical WNT signaling pathway to be directly implicated in human epilepsy.  相似文献   

14.
The aim of this study was to correlate magnetic resonance spectroscopy (MRS) measurements, including that for the N-acetyl aspartate (NAA)/creatine (Cr) ratio in the vermis (denoted V-NAA), right cerebellar hemisphere (R-NAA), and left (L-NAA) cerebellar hemisphere, with the clinical scale for the assessment and rating of ataxia (SARA) score for patients with spinocerebellar ataxia (SCA) types 2, 3, and 6. A total of 24 patients with SCA2, 48 with SCA3, and 16 with SCA6 were recruited; 12 patients with SCA2, 43 with SCA3, and 8 with SCA6 underwent detailed magnetic resonance neuroimaging. Forty-four healthy, age-matched individuals without history of neurologic disease served as control subjects. V-NAA and patient age were used to calculate the predicted age at which a patient with SCA2 or SCA3 would reach an onset V-NAA value. Results showed the following: the NAA/Cr ratio decreased with increasing age in patients with SCA but not in control subjects; the SARA score increased progressively with age and duration of illness; V-NAA showed a better correlation with SARA score than R-NAA in patients with SCA2 or SCA3; the ratio of age to V-NAA correlated well with CAG repeat number; the retrospectively predicted age of onset for SCA2 and SCA3 was consistent with patient-reported age of onset; R-NAA showed a better correlation with SARA score than V-NAA in patients with SCA6; V-NAA and R-NAA correlated with clinical severity (SARA score) in patients with SCA. The correlation between CAG repeat number and age could be expressed as a simple linear function, which might explain previous observations claiming that the greater the CAG repeat number, the earlier the onset of illness and the faster the disease progression. These findings support the use of MRS values to predict age of disease onset and to retrospectively evaluate the actual age of disease onset in SCA.  相似文献   

15.
Anticipation in bipolar affective disorder.   总被引:18,自引:12,他引:6       下载免费PDF全文
Anticipation refers to the increase in disease severity or decrease in age at onset in succeeding generations. This phenomenon, formerly ascribed to observation biases, correlates with the expansion of trinucleotide repeat sequences (TNRs) in some disorders. If present in bipolar affective disorder (BPAD), anticipation could provide clues to its genetic etiology. We compared age at onset and disease severity between two generations of 34 unilineal families ascertained for a genetic linkage study of BPAD. Life-table analyses showed a significant decrease in survival to first mania or depression from the first to the second generation (P < .001). Intergenerational pairwise comparisons showed both a significantly earlier age at onset (P < .001) and a significantly increased disease severity (P < .001) in the second generation. This difference was significant under each of four data-sampling schemes which excluded probands in the second generation. The second generation experienced onset 8.9-13.5 years earlier and illness 1.8-3.4 times more severe than did the first generation. In additional analyses, drug abuse, deaths of affected individuals prior to interview, decreased fertility, censoring of age at onset, and the cohort effect did not affect our results. We conclude that genetic anticipation occurs in this sample of unilineal BPAD families. These findings may implicate genes with expanding TNRs in the genetic etiology of BPAD.  相似文献   

16.
17.
Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disease caused by unstable expansion of a CAG repeat in the DRPLA gene. We performed detailed quantitative analysis of the size and the size distribution (range) of the expanded CAG repeats in various regions of the CNS of eight autopsied patients with DRPLA. Expanded alleles (AE) showed considerable variations in size, as well as in range, depending on the region of the CNS, whereas normal alleles did not show such variations, which indicates the occurrence of somatic mosaicism of AE in the CNS. The AE in the cerebellar cortex were consistently smaller by two to five repeat units than those in the cerebellar white matter. Moreover, the AE in the cerebral cortex were smaller by one to four repeat units than those in the cerebral white matter. These results suggest that the smaller AE in the cerebellar and cerebral cortices represent those of neuronal cells. The ranges of the AE in the cerebral cortex, cerebral white matter, and cerebellar white matter showed considerable variation ranging from 9 to 23 repeat units, whereas those in the cerebellar cortex showed little variance and were approximately 7 repeat units. The ranges of the AE in the cerebral cortex, cerebral white matter, and cerebellar white matter were much broader in patients with higher ages at death than they were in patients with lower ages at death, raising the possibility that the range of AE increases with time, as the result of mitotic instability of AE.  相似文献   

18.
19.
Dynamic mutations in human genes result from unstable trinucleotide repeats embedded within the transcribed region. The changeable nature of these mutations from generation to generation is in contrast to the static inheritance of other single-gene mutational events, e.g. point mutations, deletions, insertions and inversions, typically associated with Mendelian inheritance patterns. Intergenerational instability of dynamic mutations within families has provided an explanation for the genetic anticipation, leading to increasing severity or earlier age of onset in successive generations, associated with certain inherited disorders. While models for genomic instability presume that trinucleotide repeat expansion results from disruption of the DNA replication process, experimental evidence has not yet been obtained in support of this contention. Nevertheless, examples of unstable trinucleotide repeats continue to increase, although not all are associated with a specific phenotype. Five disorders resulting from small-scale expansions of CAG repeats within the protein-coding region are known: spinobulbar muscular atrophy, Huntington’s disease, spinocerebellar ataxia type 1, dentatorubral-pallidoluysian atrophy (DRPLA) and Machado-Joseph disease. A sixth disorder, Haw River syndrome, is allelic to DRPLA. Five folate-sensitive chromosomal fragile sites characterized to date, viz. FRAXA, FRAXE, FRAXF, FRA11B and FRA16A, all have large-scale CGG repeat expansion. Two disorders, fragile X syndrome and FRAXE mental retardation, result from instability of CGG repeats in the 5’ untranslated region ofFMR1 andF M R2 genes respectively. FRA11B lies close to chromosome 1 1q deletion endpoints in many Jacobsen syndrome patients and may be related to the deletion event producing partial aneuploidy for 1lq. Expansion of FRAXF and FRA16A has not been associated with a phenotype. Myotonic dystrophy results from a large-scale CTG expansion in the 3’ untranslated region of the myotonin protein kinase gene while Friedreich’s ataxia has recently been found to have a large-scale GAA repeat in the first intron ofX25. This article reviews the characteristics of trinucleotide repeat disorders and summarizes current understanding of the molecular pathophysiology.  相似文献   

20.

Background

The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases.

Methods

Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinson''s disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography.

Results

We detected a statistically significant decrease (by 3–5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinson''s disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)].

Conclusion

Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号