首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Plants in the Mediterranean climate region of California typically experience summer drought conditions, but correlations between zones of frequent coastal fog inundation and certain species’ distributions suggest that water inputs from fog may influence species composition in coastal habitats. We sampled the stable H and O isotope ratios of water in non-photosynthetic plant tissue from a variety of perennial grass species and soil in four sites in northern California in order to determine the proportion of water deriving from winter rains and fog during the summer. The relationship between H and O stable isotopes from our sample sites fell to the right of the local meteoric water line (LMWL) during the summer drought, providing evidence that evaporation of water from the soil had taken place prior to the uptake of water by vegetation. We developed a novel method to infer the isotope values of water before it was subjected to evaporation in which we used experimental data to calculate the slope of the δH versus δO line versus the LMWL. After accounting for evaporation, we then used a two-source mixing model to evaluate plant usage of fog water. The model indicated that 28–66% of the water taken up by plants via roots during the summer drought came from fog rather than residual soil water from winter rain. Fog use decreased as distance from the coast increased, and there were significant differences among species in the use of fog. Rather than consistent differences in fog use by species whose distributions are limited to the coast versus those with broader distributions, species responded individualistically to summer fog. We conclude that fogwater inputs can mitigate the summer drought in coastal California for many species, likely giving an advantage to species that can use it over species that cannot.  相似文献   

2.
Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Question: Does grazing by large herbivores affect species composition or community‐wide variation in plant functional traits? Location: Dune grasslands at the Belgian coast. Methods: Plant cover and soil data were collected in 146 plots that were randomly selected at 26 grazed and ungrazed grassland sites. Plant community composition was assessed by Detrended Correspondence Analysis and mean values of plant trait categories were calculated across the plots. Results: Differentiation of plant composition and community‐wide plant trait characteristics was largely determined by grazing, soil acidity and their interaction. In ungrazed situations, a clear floristic distinction appears between acidic (non‐calcareous) and alkaline (calcareous) grasslands. In grazed situations, these floristic differences largely disappeared, indicating that grazing results in a decrease of natural variation in species composition. At higher soil pH, a larger difference in plant community composition and community‐wide plant traits was observed between grazed and ungrazed plots. In ungrazed situations, shifts in plant functional traits along the acidity gradient were observed. Conclusions: Grazing is responsible for shifts in plant community composition, and hence a decrease in plant diversity among grasslands at opposing acidity conditions in coastal dune grasslands. Therefore, care should be taken when introducing grazing as a system approach for nature conservation in dune grasslands as it may eliminate part of the natural variation in plant diversity along existing abiotic gradients.  相似文献   

4.
We investigated the relationships between foliar stable carbon isotope discrimination (), % foliar N, and predawn water potentials (pd) and midday stomatal conductance (g s) of Larrea tridentata across five Mojave Desert soils with different age-specific surface and sub-surface horizon development and soil hydrologies. We wished to elucidate how this long-lived evergreen shrub optimizes leaf-level physiological performance across soils with physicochemical characteristics that affect the distribution of limiting water and nitrogen resources. We found that in young, coarse alluvial soils that permit water infiltration to deeper soil horizons, % foliar N was highest and , g s and pd were lowest, while %N was lowest and , g s and pd were highest in fine sandy soils; Larrea growing in older soils with well-developed surface and sub-surface horizons exhibited intermediate values for these parameters. showed negative linear relationships with % N (R 2=0.54) and a positive relationship with pd (R 2=0.14). Multiple regression analyses showed a strong degree of multicolinearity of g s and with pd and N, suggesting that soil-mediated distribution of co-limiting water and nitrogen resources was the primary determinant of stomatal behavior, which is the primary limitation to productivity in this shrub. These findings show that subtle changes in the soil medium plays a strong role in the spatial and temporal distribution and utilization of limiting water and nitrogen resources by this long-lived desert evergreen, and that this role can be detected through carbon isotope ratios.  相似文献   

5.
The relationships between flowering plants and their insect visitors were studied in a Mediterranean grassland in north-east Spain. Floral traits (size, shape, symmetry, and colour), floral rewards (pollen and nectar), flowering period, and floral visitors were recorded for the 17 most abundant plants in the community. Flowering was year-round, but most species flowered in spring. The three species that flowered after spring had small flowers, but the distribution of floral features (including rewards offered) did not show a strong seasonality. Ants contributed 58.5% to the flower visits recorded. Other frequent visitors were beetles (12%), flies (9.5%), honey bees (6.4%), wild bees (6.4%), and wasps (5.2%). Honey bees were most abundant in April, wild bees from April to July, beetles from May to July, and ants from May to September. The lack of tight plant-insect associations was the rule, with most plant species visited by a rather diverse array of insects representing two or more orders. The plant species having narrower spectra of visitors either had flower rewards exposed or attracted mostly illegitimate visitors. By means of correspondence analysis four categories of plants were defined according to their main groups of visitors: (1) honey bees and large wild bees; (2) large wild bees; (3) ants and beetles; and (4) beetles and small-sized bees. The Mantel test was used to calculate correlations among four matrices representing similarities in visitors attracted, floral morphological traits, pollen-nectar rewards, and blooming time, respectively. In spite of seasonality shown by the different insect groups, results indicate that the observed patterns of visitor distribution among plants were most affected by pollen-nectar rewards. Received: 28 May 1996 / Accepted: 19 October 1996  相似文献   

6.
Berendse  F.  Lammerts  E. J.  Olff  H. 《Plant Ecology》1998,137(1):71-78
Vegetation and soil development during succession in coastal dune slacks on Terschelling island, the Netherlands, was investigated, by comparing neighbouring ecosystems on similar substrates that had been developing for 1, 5, 35 and 76 years since the vegetation and organic soil layer had been removed. In this successional sequence, soil organic matter accumulated rapidly due to the production of litter and dead roots. N mineralization was extremely low, increasing from 0.2 g m-2 yr-1 after 5 years to 0.8 g m-2 yr-1 after 76 years. It was accompanied by a decline in the pH (KCl) in the upper 10 cm of the soil from 6.8 to 4.4. Most of the above-ground biomass accumulated in the shrub species Oxycoccus macrocarpos and Salix repens. The 5- year-old plots harboured many plant species (18 species per 0.25 m2), but plant species diversity was much lower in the older plots. It is concluded that most changes in species composition and the decline in diversity occurred because early successional plant species were gradually outshaded by the thick litter layer and the accumulated shrub biomass.  相似文献   

7.
Dodd  M. B.  Lauenroth  W. K.  Welker  J. M. 《Oecologia》1998,117(4):504-512
We conducted a study to test the predictions of Walter's two-layer model in the shortgrass steppe of northeastern Colorado. The model suggests that grasses and woody plants use water resources from different layers of the soil profile. Four plant removal treatments were applied in the spring of 1996 within a plant community codominated by Atriplex canescens (a C4 shrub) and Bouteloua gracilis (a C4 grass). During the subsequent growing season, soil water content was monitored to a depth of 180 cm. In addition, stem and leaf tissue of Atriplex, Bouteloua and the streamside tree Populus sargentii were collected monthly during the growing seasons of 1995 and 1996 for analysis of the δ18O value of plant stem water (for comparison with potential water sources) and the δ13C value of leaves (as an indicator of plant water status). Selective removal of shrubs did not significantly increase water storage at any depth in the measured soil profile. Selective removal of the herbaceous understory (mainly grasses) increased water storage in the top 60 cm of the soil. Some of this water gradually percolated to lower layers, where it was utilized by the shrubs. Based on stem water δ18O values, grasses were exclusively using spring and summer rain extracted from the uppermost soil layers. In contrast, trees were exclusively using groundwater, and the consistent δ13C values of tree leaves over the course of the summer indicated no seasonal changes in gas exchange and therefore minimal water stress in this life-form. Based on anecdotal rooting-depth information and initial measurements of stem water δ18O, shrubs may have also had access to groundwater. However, their overall δ18O values indicated that they mainly used water from spring and summer precipitation events, extracted from subsurface soil layers. These findings indicate that the diversity of life-forms found in this shortgrass steppe community may be a function of the spatial partitioning of soil water resources, and their differential use by grasses, shrubs, and trees. Consequently, our findings support the two-layer model in a broad sense, but indicate a relatively flexible strategy of water acquisition by shrubs. Received: 23 December 1997 / Accepted: 16 September 1998  相似文献   

8.
Petr Pyšek 《Plant Ecology》1994,112(1):45-56
Vegetation of mountain areas affected by SO2 pollution (Kruné hory Mts., Czech Republic) was analysed using multivariate methods. Communities with prevailing species Calamagrostis villosa, a rhizomatous grass expanding into deforested sites, were sampled by Braun-Blanquet relevé method. Canonical correspondence analysis was used to assess the effect of environmental variables (soil removal, deforestation, and shading). To test the effects of light, moisture, soil acidity and nitrogen, mean sample indicator values were correlated a posteriori with sample axes on ordination scores. Light, soil acidity, moisture, and site history (in terms of past deforestation and soil removal applied in reclamation procedures) were found to be the main factors responsible for the community composition. Nitrogen level had not a significant effect on the community composition. When analyzing the whole data set, i.e. including also remnants of natural spruce forests, light was the factor affecting at most the composition of communities. Within the bare spot vegetation, if treated separately, the highest variation was found along the soil acidity/moisture gradient. The effect of soil removal was only obvious at early successional stages. Species diversity increased with moisture and decreased with soil acidity. Species exhibiting S- and/or R-strategy are successful on extremely acid soils whereas forbs present in bare spots appear to be supported by disturbances.  相似文献   

9.
We have evaluated the survival and potential morphological alterations of 45 species of pathogenic filamentous fungi that had been stored in sterile water following Castellani’s method in the National Collection of Pathogenic Fungi (NCPF). Storage duration varied from 2 months to over 21 years. Ninety percent of stored organisms were shown to be viable. Viability was largely independent of the duration of storage, but did apparently vary to some degree in an organism-specific manner. In addition, certain fungi were shown to have undergone morphological alterations during storage, and exhibited significant degrees of pleomorphism upon revival. This was especially marked for several isolates of dermatophytes, where storage resulted in loss of recognisable colonial features, and overproduction of sterile mycelium with aberrant or no conidia. These findings suggest that while Castellani’s method remains an easy and inexpensive method for long-term preservation of most fungi, water storage should be supplemented by a second storage method to increase the chances of retaining both viability and morphological stability over long periods.  相似文献   

10.
Diao Y  Ma D  Wen Z  Yin J  Xiang J  Li M 《Amino acids》2008,34(1):111-117
Summary. Transmembrane (TM) proteins represent about 20–30% of the protein sequences in higher eukaryotes, playing important roles across a range of cellular functions. Moreover, knowledge about topology of these proteins often provides crucial hints toward their function. Due to the difficulties in experimental structure determinations of TM protein, theoretical prediction methods are highly preferred in identifying the topology of newly found ones according to their primary sequences, useful in both basic research and drug discovery. In this paper, based on the concept of pseudo amino acid composition (PseAA) that can incorporate sequence-order information of a protein sequence so as to remarkably enhance the power of discrete models (Chou, K. C., Proteins: Structure, Function, and Genetics, 2001, 43: 246–255), cellular automata and Lempel-Ziv complexity are introduced to predict the TM regions of integral membrane proteins including both α-helical and β-barrel membrane proteins, validated by jackknife test. The result thus obtained is quite promising, which indicates that the current approach might be a quite potential high throughput tool in the post-genomic era. The source code and dataset are available for academic users at liml@scu.edu.cn. Authors’ address: Menglong Li, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China  相似文献   

11.
韩大勇  杨永兴 《生态学报》2020,40(16):5602-5610
若尔盖高原沼泽区土壤沙化过程中植物群落的变化及其成因机制是亟待解决的区域关键科学问题之一。在若尔盖高原红原县沙化沼泽区,研究了土壤沙化梯度上植物群落种类组成、物种多样性、地上生物量的变化及其与土壤湿度、容重和孔隙度的关系。随着土壤沙化程度增加,群落特征种组替代顺序为华扁穗草(Blysmus sinocompressus)种组→高山嵩草(Kobresia pygmaea)种组→四川嵩草(K.setchwanensi)种组→黑褐穗苔草(Carex atrofusca subsp.minor)种组→粗壮嵩草(Kobresia robusta)种组;植物种数(单位样方物种丰富度和总种数)和地上生物量均表现为单峰变化格局,但植物种数峰值出现在极轻度沙化的高山嵩草群落,地上生物量峰值出现在中度沙化的四川嵩草-黑褐穗苔草群落;β多样性表现为"U"型变化格局,最高值出现在未沙化的华扁穗草群落,最低值出现在极轻度沙化的高山嵩草群落;土壤湿度对植物种多度影响最大,可解释总方差的24.8%,其次为土壤容重,可解释总方差的1.4%;沙化过程中土壤湿度是影响植物群落生态分布和种类构成的关键因素之一,尤其影响群落...  相似文献   

12.
Major knowledge gaps exist with respect to light-quality regimes in the coastal-zone Strandzha Quercus frainetto (Q.f.) forest region adjoining the southern Bulgarian Black Sea. This paper presents preliminary results that help narrow these gaps. In conjunction with leaf area index (LAI) field campaigns we undertook measurements with an array of 7 broad-band (ca 40 nm) sensors covering the range 0.40–0.94 μm, plus 1 sensor for UVB (0.297 μm peak) and 1 for photosynthetically active radiation (PAR). Measurements focused on inside-forest shade conditions at sites 0 to ca 15 km from the Black Sea and at altitudes up to ca 120 m above sea level. Some of the sites were also studied using a high-resolution spectroradiometer. A sequential measuring strategy was necessary. This involves potentially large uncertainties, here addressed through estimations of the variability around the sinusoidal course of daylight. Light-quality regimes were found to be in general support of earlier studies of deciduous forests. Our data from the broad-band sensors and from the spectroradiometer are mutually supportive. They indicate a stronger red-shift below Q.f. canopies than below canopies in enclaves dominated by Fagus orientalis and Pinus sylvestris. Transmission in the range 0.50–0.55 μm increases beneath the three types of canopies, most pronounced in the Q.f. case. Analysis of relationships between the inside-forest to open-field irradiance ratio and LAI supports the use of Beer’s Law. We found a fairly strong relationship between the red (0.66 μm) to far-red (0.73 μm) irradiance ratios (R/FR) and LAI for the Q.f. forest. In quantitative terms, the result is new for this Q.f. region, and suggests further research to explore whether a two-sensor approach (0.66 and 0.73 μm) might offer possibilities for further low-cost mapping of the spatio-temporal patterns of R/FR and LAI in Strandzha. Such mapping would assist in further studies of the region’s forest biogeochemistry and vitality.  相似文献   

13.
Ogle K  Reynolds JF 《Oecologia》2004,141(2):282-294
The two-layer and pulse-reserve hypotheses were developed 30 years ago and continue to serve as the standard for many experiments and modeling studies that examine relationships between primary productivity and rainfall variability in aridlands. The two-layer hypothesis considers two important plant functional types (FTs) and predicts that woody and herbaceous plants are able to co-exist in savannas because they utilize water from different soil layers (or depths). The pulse-reserve model addresses the response of individual plants to precipitation and predicts that there are biologically important rain events that stimulate plant growth and reproduction. These pulses of precipitation may play a key role in long-term plant function and survival (as compared to seasonal or annual rainfall totals as per the two-layer model). In this paper, we re-evaluate these paradigms in terms of their generality, strengths, and limitations. We suggest that while seasonality and resource partitioning (key to the two-layer model) and biologically important precipitation events (key to the pulse-reserve model) are critical to understanding plant responses to precipitation in aridlands, both paradigms have significant limitations. Neither account for plasticity in rooting habits of woody plants, potential delayed responses of plants to rainfall, explicit precipitation thresholds, or vagaries in plant phenology. To address these limitations, we integrate the ideas of precipitation thresholds and plant delays, resource partitioning, and plant FT strategies into a simple threshold-delay model. The model contains six basic parameters that capture the nonlinear nature of plant responses to pulse precipitation. We review the literature within the context of our threshold-delay model to: (i) develop testable hypotheses about how different plant FTs respond to pulses; (ii) identify weaknesses in the current state-of-knowledge; and (iii) suggest future research directions that will provide insight into how the timing, frequency, and magnitude of rainfall in deserts affect plants, plant communities, and ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号