首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The migration, cytoarchitectonic segregation and neuritogenesis of the inferior olive (ION) and lateral reticular (LRN) neurons are described in the rat. Generated in the same primary precerebellar neuroepithelium, at embryonic days 12-13 (E12-E13) for the ION and E12-E14 for the LRN, the postmitotic cells take either the intraparenchymal (smms, for ION neurons) or the subpial migratory streams (mms, for LRN neurons and other populations, as those of the external cuneate nucleus, ECN). The ION neurons settle in their ultimate domain from E16 to E18, ipsilaterally to their proliferation side. The LRN (and ECN) neurons cross the midline at the "floor plate" (FP) level, and settle contralaterally to their birthplace between E17 and E19. In both cases, the acquisition of a mature dendritic tree is a late event when compared to the precocious axonogenesis. The FP structure may play a major role in i) attracting the axons of the precerebellar neurons, and ii) instructing these neurons whether to cross the midline or not. Thus, ultimately the FP may govern the pattern (crossed or uncrossed) of the projections of the ION and LRN to their common cerebellar target.  相似文献   

2.
Classic cadherins are calcium dependent homophilic cell adhesion molecules that play a key role in developmental processes such as morphogenesis, compartmentalization and maintenance of a tissue. They also play important roles in development and function of the nervous system. Although classic cadherins have been shown to be involved in the migration of non-neuronal cells, little is known about their role in neuronal migration. Here, we show that classic cadherins are essential for the migration of precerebellar neurons. In situ hybridization analysis shows that at least four classic cadherins, cadherin 6 (Cad6), cadherin 8 (Cad8), cadherin11 (Cad11) and N-cadherin (Ncad), are expressed in the migratory streams of lateral reticular nucleus and external cuneate nucleus (LRN/ECN) neurons. Functional analysis performed by electroporation of cadherin constructs into the hindbrain indicates requirement for cadherins in the migration of LRN/ECN neurons both in vitro and in vivo. While overexpression of full-length classic cadherins, NCAD and CAD11, has no effect on LRN/ECN neuron migration, overexpression of two dominant negative (DN) constructs, membrane-bound form and cytoplasmic form, slows it down. Introduction of a DN construct does not alter some characteristics of LRN/ECN cells as indicated by a molecular marker, TAG1, and their responsiveness to chemotropic activity of the floor plate (FP). These results suggest that classic cadherins contribute to contact-dependent mechanisms of precerebellar neuron migration probably via their adhesive property.  相似文献   

3.
Neuronal populations destined to form several precerebellar nuclei are generated by the rhombic lip in the caudal hindbrain. These immature neurons gather into the olivary and the superficial migratory streams and migrate tangentially around the hindbrain to reach their final position. We focus on the cells of the superficial stream that migrate ventrally, cross the midline and form the lateral reticular (LRN) and external cuneate (ECN) nuclei. The cells of the superficial steam are preceded by long leading processes; in the dorsal neural tube, they migrate in close apposition to each other and form distinct chains, whereas they disperse and follow Tuj-1 immunoreactive axons on reaching the ventral hindbrain. This suggests that, in the superficial stream, neuronal migration combines both homotypic and heterotypic mechanisms. We also show that the adhesion molecule TAG-1 is expressed by the migrating cells. Blocking TAG-1 function results in alterations in the superficial migration, indicating that TAG-1 is involved in the superficial migration. Other members of the immunoglobulin superfamily and known ligands of TAG-1 are also expressed in the region of the migration but are not involved in the migration. These findings provide evidence that the TAG-1 protein is involved as a contact-dependent signal guiding not only axonal outgrowth but also cell migration.  相似文献   

4.
During development, precerebellar neurons migrate dorsoventrally from the rhombic lip to the floor plate. Some of these neurons cross the midline while others stop. We have identified a role for the slit receptor Rig-1/Robo3 in directing this process. During their tangential migration, neurons of all major hindbrain precerebellar nuclei express high levels of Rig-1 mRNA. Rig-1 expression is rapidly downregulated as their leading process crosses the floor plate. Interestingly, most precerebellar nuclei do not develop normally in Rig-1-deficient mice, as they fail to cross the midline. In addition, inferior olivary neurons, which normally send axons into the contralateral cerebellum, project ipsilaterally in Rig-1 mutant mice. Similarly, neurons of the lateral reticular nucleus and basilar pons are unable to migrate across the floor plate and instead remain ipsilateral. These results demonstrate that Rig-1 controls the ability of both precerebellar neuron cell bodies and their axons to cross the midline.  相似文献   

5.
G E Gray  J R Sanes 《Neuron》1991,6(2):211-225
We used retrovirus-mediated gene transfer to study the migration of clonally related cells in the developing chicken optic tectum. Clonal cohorts initially form radial arrays in the ventricular zone (approximately E5), but eventually divide into three separate migratory streams. In the first migration, a minor population of cells migrates tangentially along axon fascicles in medio-laterally directed files (approximately E6-E7); these eventually differentiate into multipolar efferent cells. After E7, the majority of cells in each clone migrate radially along fascicles of radial glia to form the tectal plate, wherein they differentiate into neurons and astrocytes. Around E9, a set of small cells leaves the radial arrays in superficial layers to form a second tangential migration; at least some of these differentiate into astrocytes. Thus, as the tectum develops, cells derived from a single multipotential precursor migrate along three separate pathways, follow separate guidance cues, and adopt distinct phenotypes.  相似文献   

6.
7.
Modes of neuronal migration in the developing cerebral cortex   总被引:2,自引:0,他引:2  
The conventional scheme of cortical formation shows that postmitotic neurons migrate away from the germinal ventricular zone to their positions in the developing cortex, guided by the processes of radial glial cells. However, recent studies indicate that different neuronal types adopt distinct modes of migration in the developing cortex. Here, we review evidence for two modes of radial movement: somal translocation, which is adopted by the early-generated neurons; and glia-guided locomotion, which is used predominantly by pyramidal cells. Cortical interneurons, which originate in the ventral telencephalon, use a third mode of migration. They migrate tangentially into the cortex, then seek the ventricular zone before moving radially to take up their positions in the cortical anlage.  相似文献   

8.
The development of the mammalian neocortex requires radial and tangential migration of cells. Radial migration of differentiated neurons from the ventricular zone (VZ) is well established. It is hypothesised that an earlier phase of tangential migration of mitotically active cells lays down a widespread periodically spaced set of progenitors that generate radial arrays of postmitotic neurons. We use a transgenic cell lineage marker to label and observe the behaviour of progenitors before and during the early stages of neurogenesis. Using optical projection tomography (OPT), we show that individual progenitor cells generate many radially arrayed columns of periodically spaced cells. Column positions indicate the paths taken by these progenitor cells as they migrate, often over long distances, through the proliferative zone. Clonally related cells can be distributed in both hemispheres, suggesting progenitor cells cross the midline in the anterior neural plate. We observe a dramatic and rapid decline in the number of labelled clones after E13.5, indicating that there is extensive cell death at this time.  相似文献   

9.
Neurons destined to form several precerebellar nuclei are generated in the dorsal neuroepithelium (rhombic lip) of caudal hindbrain. They form two ventrally directed migratory streams, which behave differently. While neurons in the superficial migration migrate in a subpial position and cross the midline to settle into the contralateral hindbrain, neurons in the olivary migration travel deeper in the parenchyma and stop ipsilaterally against the floor plate. In the present study, we compared the behavior of the two neuronal populations in an organotypic culture system that preserves several aspects of their in vivo environment. Both migrations occurred in mouse hindbrain explants dissected at E11.5 even when the floor plate was ablated at the onset of the culture period, indicating that they could rely on dorsoventral cues already distributed in the neural tube. Nevertheless, the local constraints necessary for the superficial migration were more specific than for the olivary migration. Distinct chemoattractive and chemorespulsive signal were found to operate on the migrations. The floor plate exhibited a strong chemoattractive influence on both migrations, which deviated from their normal path in the direction of ectopic floor plate fragments. It was also found to produce a short-range stop signal and to induce inferior olive aggregation. The ventral neural tube was also found to inhibit or slow down the migration of olivary neurons. Interestingly, while ectopic sources of netrin were found to influence both migrations, this effect was locally modulated and affected differentially the successive phases of migration. Consistent with this observation, while neurons in the superficial migration expressed the Dcc-netrin receptor, the migrating olivary neurons did not express Dcc before they reached the midline. Our observations provide a clearer picture of the hierarchy of environmental cues that influence the morphogenesis of these precerebellar nuclei.  相似文献   

10.
Neuronal migration is required for the establishment of specific neural structures, such as layers and nuclei. Neurons migrate along specific migratory routes toward their final destinations, sometimes across long distances. However, the cellular and molecular interactions that control neuronal migration are largely unknown. Here, we examined the mechanism underlying the transmedian migration of precerebellar neurons using a flat whole-mount preparation of the rat embryo. These neurons were initially attracted by the floor plate (FP) at the ventral midline. However, after crossing the midline, they lost their responsiveness to the FP and became attracted by the alar plate (AP). Although the loss of responsiveness to FP cues was caused by an encounter of migrating cells with the FP, the gain of responsiveness to AP cues occurred irrespective of their encounter with the FP. These results identify a crucial change in the response of migrating cells to attractive guidance cues during the transmedian migration of precerebellar neurons.  相似文献   

11.
Neuronal migration is crucial for the construction of neuronal architecture such as layers and nuclei. Most inhibitory interneurons in the neocortex derive from the basal forebrain and migrate tangentially; however, little is known about the mode of migration of these neurons in the cortex. We used glutamate decarboxylase (Gad)67-green fluorescent protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)-ergic neurons and performed time-lapse analysis. In coronal slices, many GFP-positive neurons in the lower intermediate zone (IZ) and subventricular zone (SVZ) showed robust tangential migration from lateral to medial cortex, while others showed radial and non-radial migration mostly towards the pial surface. In flat-mount preparations, GFP-positive neurons of the marginal zone (MZ) showed multidirectional tangential migration. Some of these neurons descended toward the cortical plate (CP). Intracortical migration of these neurons was largely unaffected by a treatment that cleaves glycosylphosphatidylinositol (GPI) anchors. These findings suggest that tangential migration of cortical interneurons from lateral to medial cortex predominantly occurs in the IZ/SVZ and raise the possibility that a part of the pial surface-directed neurons in the IZ/SVZ reach the MZ, whereby they spread into the whole area of the cortex. At least a part of these neurons may descend toward the CP. Our results also suggest that intracortical migration of GABAergic neurons occurs independent of GPI-anchored proteins.  相似文献   

12.
Netrin 1 is a long-range diffusible factor that exerts chemoattractive or chemorepulsive effects on developing axons growing to or away from the neural midline. Here we used tissue explants to study the action of netrin 1 in the migration of several cerebellar and precerebellar cell progenitors. We show that netrin 1 exerts a strong chemoattractive effect on migrating neurons from the embryonic lower rhombic lip at E12-E14, which give rise to precerebellar nuclei. Netrin 1 promotes the exit of postmitotic migrating neurons from the embryonic lower rhombic lip and upregulates the expression of TAG-1 in these neurons. In addition, in the presence of netrin 1, the migrating neurons are not isolated but are associated with thick fascicles of neurites, typical of the neurophilic way of migration. In contrast, the embryonic upper rhombic lip, which contains tangentially migrating granule cell progenitors, did not respond to netrin 1. Finally, in the postnatal cerebellum, netrin 1 repels both the parallel fibres and migrating granule cells growing out from explants taken from the external germinal layer. The developmental patterns of expression in vivo of netrin 1 and its receptors are consistent with the notion that netrin 1 secreted in the midline acts as chemoattractive cue for precerebellar neurons migrating circumferentially along the extramural stream. Similarly, the pattern of expression in the postnatal cerebellum suggests that netrin 1 could regulate the tangential migration of postmitotic premigratory granule cells. Thus, molecular mechanisms considered as primarily involved in axonal guidance appear also to steer neuronal cell migration.  相似文献   

13.
Cells migrate via diverse pathways and in different modes to reach their final destinations during development. Tangential migration has been shown to contribute significantly to the generation of neuronal diversity in the mammalian telencephalon. GABAergic interneurons are the best-characterized neurons that migrate tangentially, from the ventral telencephalon, dorsally into the cortex. However, the molecular mechanisms and nature of these migratory pathways are only just beginning to be unravelled. In this study we have first identified a novel dorsal-to-ventral migratory route, in which cells migrate from the interganglionic sulcus, located in the basal telencephalon between the lateral and medial ganglionic eminences, towards the pre-optic area and anterior hypothalamus in the diencephalon. Next, with the help of transplantations and gain-of-function studies in organotypic cultures, we have shown that COUP-TFI and COUP-TFII are expressed in distinct and non-overlapping migratory routes. Ectopic expression of COUP-TFs induces an increased rate of cell migration and cell dispersal, suggesting roles in cellular adhesion and migration processes. Moreover, cells follow a distinct migratory path, dorsal versus ventral, which is dependent on the expression of COUP-TFI or COUP-TFII, suggesting an intrinsic role of COUP-TFs in guiding migrating neurons towards their target regions. Therefore, we propose that COUP-TFs are directly involved in tangential cell migration in the developing brain, through the regulation of short- and long-range guidance cues.  相似文献   

14.
Newborn neurons migrate extensively in the radial and tangential directions to organize the developing vertebrate nervous system. We show here that mutations in zebrafish trilobite (tri) that affect gastrulation-associated cell movements also eliminate tangential migration of motor neurons in the hindbrain. In the wild-type hindbrain, facial (nVII) and glossopharyngeal (nIX) motor neurons are induced in rhombomeres 4 and 6, respectively, and migrate tangentially into r6 and r7 (nVII) and r7 (nIX). In all three tri alleles examined, although normal numbers of motor neurons are induced, nVII motor neurons are found exclusively in r4, and nIX-like motor neurons are found exclusively in r6. The migration of other neuronal and nonneuronal cell types is unaffected in tri mutants. Rhombomere formation and the development of other hindbrain neurons are also unaffected in tri mutants. Furthermore, tangential neuronal migration occurs normally in the gastrulation mutant knypek, indicating that the trilobite neuron phenotype does not arise nonspecifically from aberrant gastrulation-associated movements. We conclude that trilobite function is specifically required for two types of cell migration that occur at different stages of zebrafish development.  相似文献   

15.
The migration process of the ventral horn in chick embryo spinal cord cells has been studied between 2.5 and 5 days of incubation (HH-17, HH-26), using the Golgi technique. Two different migratory modes are observed. Type I--Migration by nucleus translocation. Most of the ventral horn motor neurons migrate by nucleus translocation within the peripheral cylinder of the cytoplasm (migration by nucleus translocation). Type II--Free migration cells. Other cells migrate disconnected from both limiting surfaces (ventricular and pial). On the basis of shape and migratory behaviour they have been identified as smooth cells and multipodial cells.  相似文献   

16.
17.
18.
During cortical development, newly generated neurons migrate radially toward their final positions. Although several candidate genes essential for this radial migration have been reported, the signaling pathways regulating it are largely unclear. Here we studied the role of phosphatidylinositol (PI) 3-kinase and its downstream signaling molecules in the radial migration of cortical neurons in vivo and in vitro. The expression of constitutively active and dominant-negative PI 3-kinases markedly inhibited radial migration. In the neocortical slice culture, a PI 3-kinase inhibitor suppressed the formation of GTP-bound Rac1 and Cdc42 and radial migration. Constitutively active and dominant-negative forms of Rac1 and Cdc42 but not Akt also significantly inhibited radial migration. In migrating neurons, wild-type Rac1 and Cdc42 showed different localizations; Rac1 localized to the plasma membrane and Cdc42 to the perinuclear region on the side of the leading processes. These results suggest that both the PI 3-kinase/Rac1 and Cdc42 pathways are involved in the radial migration of cortical neurons and that they have different roles.  相似文献   

19.
Recent studies suggest that neurons born in the developing basal forebrain migrate long distances perpendicularly to radial glia and that many of these cells reach the developing neocortex. This form of tangential migration, however, has not been demonstrated in vivo, and the sites of origin, pathways of migration and final destinations of these neurons in the postnatal brain are not fully understood. Using ultrasound-guided transplantation in utero, we have mapped the migratory pathways and fates of cells born in the lateral and medial ganglionic eminences (LGE and MGE) in 13.5-day-old mouse embryos. We demonstrate that LGE and MGE cells migrate along different routes to populate distinct regions in the developing brain. We show that LGE cells migrate ventrally and anteriorly, and give rise to the projecting medium spiny neurons in the striatum, nucleus accumbens and olfactory tubercle, and to granule and periglomerular cells in the olfactory bulb. By contrast, we show that the MGE is a major source of neurons migrating dorsally and invading the developing neocortex. MGE cells migrate into the neocortex via the neocortical subventricular zone and differentiate into the transient subpial granule neurons in the marginal zone and into a stable population of GABA-, parvalbumin- or somatostatin-expressing interneurons throughout the cortical plate.  相似文献   

20.
During adult neurogenesis, newly formed olfactory bulb (OB) interneurons migrate radially to integrate into specific layers of the OB. Despite the importance of this process, the intracellular mechanisms that regulate radial migration remain poorly understood. Here, we find that microRNA (miRNA) let‐7 regulates radial migration by modulating autophagy in new‐born neurons. Using Argonaute2 immunoprecipitation, we performed global profiling of miRNAs in adult‐born OB neurons and identified let‐7 as a highly abundant miRNA family. Knockdown of let‐7 in migrating neuroblasts prevented radial migration and led to an immature morphology of newly formed interneurons. This phenotype was accompanied by a decrease in autophagic activity. Overexpression of Beclin‐1 or TFEB in new‐born neurons lacking let‐7 resulted in re‐activation of autophagy and restored radial migration. Thus, these results reveal a miRNA‐dependent link between autophagy and adult neurogenesis with implications for neurodegenerative diseases where these processes are impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号