首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ganglioside GD3, which is one of the major gangliosides expressed on the cell surface human tumors of neuroectodermal origin, has been studied as a target molecule for passive immunotherapy. We established ten kinds of anti-GD3 monoclonal antibodies (mAb) of the mouse IgG3 subclass by immunization with purified GD3 and melanoma cells. One of the established mAb, KM641, showed major reactivity with GD3 and minor reactivity with GQ1b out of 11 common gangliosides in an enzymelinked immunosorbent assay. Immunostaining of gangliosides, separated on thin-layer chromatography plates, using KM641 revealed that most of the melanoma cell lines contained immunoreactive GD3 and GD3-lactone at a high level, but only the adrenal gland and the urinary bladder out of 21 human normal tissues had immunoreactive GD3. In immunofluorescence, KM641 bound to a variety of living tumor cell lines especially melanoma cells, including some cell lines to which another anti-GD3 mAb R24, established previously, failed to bind. High-affinity binding of KM641 to a tumor cell line was quantified by Scatchard analysis (K d = 1.9×10–8 M). KM641 exerted tumor-killing activity in the presence of effector cells or complement against melanoma cells expressing GD3 at a high level. Not only natural killer cells but also polymorphonuclear cells were effective as the effector cells in antibody-dependent cellular cytotoxicity. Intravenous injection of KM641 markedly suppressed the tumor growth of a slightly positive cell line, C24.22 (7.2×105 binding sites/cell), as well as a very GD3-positive cell line, G361 (1.9×107 binding sites/cell), inoculated intradermally in nude mice. KM641, characterized by a high binding affinity for GD3, has the potential to be a useful agent for passive immunotherapy of human cancer.  相似文献   

2.
Ganglioside GD3, which is one of the major gangliosides expressed on the cell surface of human tumors of neuroectodermal origin has been focused on as a target molecule for passive immunotherapy. We have cloned the cDNA encoding the immunoglobulin light and heavy chains of an anti-GD3 monoclonal antibody KM641 (murine IgG3, ), and constructed the chimeric genes by linking the cDNA fragments of the murine light and heavy variable regions to cDNA fragments of the human and 1 constant regions, respectively. The transfer of these cDNA constructs into SP2/0 mouse myeloma cells resulted in the production of the chimeric antibody, designated KM871, that retained specific binding activity to GD3. Indirect immunofluorescence revealed the same staining pattern for chimeric KM871 and the mouse counterpart KM641 on GD3-expressing melanoma cells. When human serum and human peripheral blood mononuclear cells were used as effectors in complement-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity respectively, the chimeric KM871 was more effective in killing GD3-expressing tumor cells than was the mouse counterpart KM641. Intravenous injection of chimeric KM871 markedly suppressed tumor growth in nude mice. The chimeric KM871, having enhanced antitumor activities and less immunogenicity than the mouse counterpart, would be a useful agent for passive immunotherapy of human cancer.  相似文献   

3.
Mice genetically engineered to lack complex gangliosides are improved hosts for raising antibodies against those gangliosides. We report the generation and characterization of nine immunoglobulin G (IgG)-class monoclonal antibodies (mAbs) raised against the four major brain gangliosides in mammals. These include (designated as ganglioside specificity-IgG subclass) two anti-GM1 mAbs (GM1-1, GM1-2b), three anti-GD1a mAbs (GD1a-1, GD1a-2a, GD1a-2b), one anti-GD1b mAb (GD1b-1), and three anti-GT1b mAbs (GT1b-1, GT1b-2a, GT1b-2b). Each mAb demonstrated high specificity, with little or no cross-reactivity with other major brain gangliosides. Enzyme-linked immunosorbent assay (ELISA) screening against 14 closely related synthetic and purified gangliosides confirmed the high specificity, with no significant cross-reactivity except that of the anti-GD1a mAbs for the closely related minor ganglioside GT1a alpha. All of the mAbs were useful for ELISA, TLC immunooverlay, and immunocytochemistry. Neural cells from wild-type rats and mice were immunostained to differing levels with the anti-ganglioside antibodies, whereas neural cells from mice engineered to lack complex gangliosides (lacking the ganglioside-specific biosynthetic enzyme UDP-GalNAc:GM3/GD3 N-acetylgalactosaminyltransferase) remained unstained, demonstrating that most of the mAbs react only with gangliosides and not with related structures on glycoproteins. These mAbs may provide useful tools for delineation of the expression and function of the major brain gangliosides and for probing the pathology of anti-ganglioside autoimmune diseases.  相似文献   

4.
Neutrophils and mononuclear cells (MNC) can mediate antibody-dependent cellular cytotoxicity (ADCC) against cancer cells. To study cytotoxicity and growth inhibition of neuroblastoma cells by neutrophils and MNC with chimeric anti-disialoganglioside (GD2) monoclonal antibody (mAb) ch14.18, we developed digital image microscopy scanning (DIMSCAN) assays that measure fluorescence of target cells in 96-well plates after 6–18 h (cytotoxicity assay) or 7 days (growth assay). Neuroblastoma cell lines (GD2-positive: SMS-KCN, SMS-LHN, LA-N-1; GD2-negative: SK-N-SH) were preloaded with calcein acetoxymethyl ester for the cytotoxicity assay or labeled in situ after 7 days of culture with fluorescein diacetate in the growth assay. Fluorescence, as quantified by DIMSCAN, was correlated with neuroblastoma cell number in both assays (100–2000 cells/well). In the cytotoxicity test, both neutrophils and MNC effectively mediated ADCC of GD2-positive but not GD2-negative neuroblastoma cell lines. Cytotoxicity of both neutrophils and MNC increased with effector to target cell (E:T) ratio (5–50:1) and mAb ch.14.18 dose (0.1–10 μg/ml). ADCC of neutrophils, but not MNC, increased with addition of GM-CSF. Neutrophils, especially with rhGM-CSF, significantly suppressed growth of GD2-positive cell lines at a high E:T ratio (50:1) and mAb dose (10 μg/ml). Without antibody, neutrophils inhibited growth of one cell line (LA-N-1) but stimulated growth of two others (SMS-KCN, SMS-LHN). If neuroblastoma cells did not express GD2 (SK-N-SH), neutrophils stimulated growth whether or not antibody was present. Neutrophil culture supernatants increased growth of SK-N-SH, LA-N-1, and SMS-KCN cells, and MNC culture supernatants increased growth of SK-N-SH. In conclusion, neutrophils can mediate cytotoxicity and growth inhibition with a chimeric anti-GD2 antibody but also can promote tumor cell growth if antibody is not present or if GD2 is not expressed. Received: 18 November 1998 / Accepted: 24 September 1999  相似文献   

5.
Endothelin-1 (ET-1)/endothelin A receptor (ETAR) signaling is important for osteosarcoma (OS) progression. Monoclonal antibodies (mAbs) targeting ganglioside GD2 reportedly inhibit tumor cell viability independent of the immune system. A recent study suggests that ganglioside GD2 may play an important role in OS progression. In the present study, we for the first time explored the effects of anti-GD2 mAb alone or in combination with ETAR antagonist on OS cell invasiveness and viability. Human OS cell lines Saos-2, MG-63 and SJSA-1 were treated with control IgG (PK136 mAb, 50 µg/mL), anti-GD2 14G2a mAb (50 µg/mL), selective ETAR antagonist BQ123 (5 µM), or 14G2a (50 µg/mL)+BQ123 (5 µM). Cells with knockdown of ETAR (ETAR-shRNA) with or without 14G2a mAb treatment were also tested. Cells treated with selective phosphatidylinositide 3-kinase (PI3K) inhibitor BKM120 (50 µM) were used as a positive control. Our results showed that BQ123, ETAR-shRNA and 14G2a mAb individually decreased cell invasion and viability, matrix metalloproteinase-2 (MMP-2) expression and activity, PI3k activity, and phosphorylation at serine 473 (ser473) of Akt in OS cells. 14G2a mAb in combination with BQ123 or ETAR-shRNA showed significantly stronger inhibitory effects compared with each individual treatment. In all three cell lines tested, 14G2a mAb in combination with BQ123 showed the strongest inhibitory effects. In conclusion, we provide the first in vitro evidence that anti-ganglioside GD2 14G2a mAb effectively inhibits cell invasiveness, MMP-2 expression and activity, and cell viability in human OS cells. ETAR antagonist BQ123 significantly enhances the inhibitory effects of 14G2a mAb, likely mainly through inhibiting the PI3K/Akt pathway. This study adds novel insights into OS treatment, which will serve as a solid basis for future in vivo studies on the effects of combined treatment of OS with anti-ganglioside GD2 mAbs and ETAR antagonists.  相似文献   

6.
Antibodies are principal immune components elicited by vaccines to induce protection from microbial pathogens. In the Thai RV144 HIV-1 vaccine trial, vaccine efficacy was 31% and the sole primary correlate of reduced risk was shown to be vigorous antibody response targeting the V1V2 region of HIV-1 envelope. Antibodies against V3 also were inversely correlated with infection risk in subsets of vaccinees. Antibodies recognizing these regions, however, do not exhibit potent neutralizing activity. Therefore, we examined the antiviral potential of poorly neutralizing monoclonal antibodies (mAbs) against immunodominant V1V2 and V3 sites by passive administration of human mAbs to humanized mice engrafted with CD34+ hematopoietic stem cells, followed by mucosal challenge with an HIV-1 infectious molecular clone expressing the envelope of a tier 2 resistant HIV-1 strain. Treatment with anti-V1V2 mAb 2158 or anti-V3 mAb 2219 did not prevent infection, but V3 mAb 2219 displayed a superior potency compared to V1V2 mAb 2158 in reducing virus burden. While these mAbs had no or weak neutralizing activity and elicited undetectable levels of antibody-dependent cellular cytotoxicity (ADCC), V3 mAb 2219 displayed a greater capacity to bind virus- and cell-associated HIV-1 envelope and to mediate antibody-dependent cellular phagocytosis (ADCP) and C1q complement binding as compared to V1V2 mAb 2158. Mutations in the Fc region of 2219 diminished these effector activities in vitro and lessened virus control in humanized mice. These results demonstrate the importance of Fc functions other than ADCC for antibodies without potent neutralizing activity.  相似文献   

7.
Purpose  There are no suitable small animal models to evaluate human antibody-dependent cellular cytotoxicity (ADCC) in vivo, due to species incompatibilities. Thus, the first aim of this study was to establish a human tumor-bearing mouse model in which human immune cells can engraft and mediate ADCC, but where the endogenous mouse immune cells cannot mediate ADCC. The second aim was to evaluate ADCC mediated in these humanized mice by the defucosylated anti-CC chemokine receptor 4 (CCR4) monoclonal antibody (mAb) which we have developed and which is now in phase I clinical trials. Experimental design  NOD/Shi-scid, IL-2Rγnull (NOG) mice were the recipients of human immune cells, and CCR4-expressing Hodgkin lymphoma (HL) and cutaneous T-cell lymphoma (CTCL) cell lines were used as target tumors. Results  Humanized mice have been established using NOG mice. The chimeric defucosylated anti-CCR4 mAb KM2760 showed potent antitumor activity mediated by robust ADCC in these humanized mice bearing the HL or CTCL cell lines. KM2760 significantly increased the number of tumor-infiltrating CD56-positive NK cells which mediate ADCC, and reduced the number of tumor-infiltrating FOXP3-positive regulatory T (Treg) cells in HL-bearing humanized mice. Conclusions  Anti-CCR4 mAb could be an ideal treatment modality for many different cancers, not only to directly kill CCR4-expressing tumor cells, but also to overcome the suppressive effect of Treg cells on the host immune response to tumor cells. In addition, using our humanized mice, we can perform the appropriate preclinical evaluation of many types of antibody based immunotherapy.  相似文献   

8.
《MABS-AUSTIN》2013,5(5):826-836
ABSTRACT

Typical crystallizable fragment (Fc) glycans attached to the CH2 domain in therapeutic monoclonal antibodies (mAbs) are core-fucosylated and asialo-biantennary complex-type glycans, e.g., G2F (full galactosylation), G1aF (terminal galactosylation on the Man α1-6 arm), G1bF (terminal galactosylation on the Man α1-3 arm), and G0F (non-galactosylation). Terminal galactose (Gal) residues of Fc-glycans are known to influence effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (CDC), but the impact of the G1F isomers (G1aF and G1bF) on the effector functions has not been reported. Here, we prepared four types of glycoengineered anti-CD20 mAbs bearing homogeneous G2F, G1aF, G1bF, or G0F (G2F mAb, G1aF mAb, G1bF mAb, or G0F mAb, respectively), and evaluated their biological activities. Interestingly, G1aF mAb showed higher C1q- and FcγR-binding activities, CDC activity, and FcγR-activation property than G1bF mAb. The activities of G1aF mAb and G1bF mAb were at the same level as G2F mAb and G0F mAb, respectively. Hydrogen–deuterium exchange/mass spectrometry analysis of dynamic structures of mAbs revealed the greater involvement of the terminal Gal residue on the Man α1-6 arm in the structural stability of the CH2 domain. Considering that mAbs interact with FcγR and C1q via their hinge proximal region in the CH2 domain, the structural stabilization of the CH2 domain by the terminal Gal residue on the Man α1-6 arm of Fc-glycans may be important for the effector functions of mAbs. To our knowledge, this is the first report showing the impact of G1F isomers on the effector functions and dynamic structure of mAbs.

Abbreviations: ABC, ammonium bicarbonate solution; ACN, acetonitrile; ADCC, antibody-dependent cell-mediated cytotoxicity; C1q, complement component 1q; CDC, complement-dependent cytotoxicity; CQA, critical quality attribute; Endo, endo-β-N-acetylglucosaminidase; FA, formic acid; Fc, crystallizable fragment; FcγR, Fcγ receptors; Fuc, fucose; Gal, galactose; GlcNAc, N-acetylglucosamine; GST, glutathione S-transferase; HER2, human epidermal growth factor receptor 2; HDX, hydrogen–deuterium exchange; HILIC, hydrophilic interaction liquid chromatography; HLB-SPE, hydrophilic-lipophilic balance–solid-phase extraction; HPLC, high-performance liquid chromatography; mAb, monoclonal antibody; Man, mannose; MS, mass spectrometry; PBS, phosphate-buffered saline; SGP, hen egg yolk sialylglycopeptides.  相似文献   

9.
Targeted monoclonal antibodies (mAb) can be used therapeutically for tumors with identifiable antigens such as disialoganglioside GD2, expressed on neuroblastoma and melanoma tumors. Anti-GD2 mAbs (αGD2) can provide clinical benefit in patients with neuroblastoma. An important mechanism of mAb therapy is antibody-dependent cellular cytotoxicity (ADCC). Combinatorial therapeutic strategies can dramatically increase the anti-tumor response elicited by mAbs. We combined a novel αGD2 mAb, hu14.18K322A, with an immunostimulatory regimen of agonist CD40 mAb and class B CpG-ODN 1826 (CpG). Combination immunotherapy was more effective than the single therapeutic components in a syngeneic model of GD2-expressing B16 melanoma with minimal tumor burden. NK cell depletion in B6 mice showed that NK cells were required for the anti-tumor effect; however, anti-tumor responses were also observed in tumor-bearing SCID/beige mice. Thus, NK cell cytotoxicity did not appear to be essential. Peritoneal macrophages from anti-CD40 + CpG-treated mice inhibited tumor cells in vitro in an hu14.18K322A antibody-dependent manner. These data highlight the importance of myeloid cells as potential effectors in immunotherapy regimens utilizing tumor-specific mAb and suggest that further studies are needed to investigate the therapeutic potential of activated myeloid cells and their interaction with NK cells.  相似文献   

10.
Monoclonal antibodies (mAbs) have become an important class of therapeutics, particularly in the realm of anticancer immunotherapy. While the two antigen-binding fragments (Fabs) of an mAb allow for high-avidity binding to molecular targets, the crystallizable fragment (Fc) engages immune effector elements. mAbs of the IgG class are used for the treatment of autoimmune diseases and can elicit antitumor immune functions not only by several mechanisms including direct antigen engagement via their Fab arms but also by Fab binding to tumors combined with Fc engagement of complement component C1q and Fcγ receptors. Additionally, IgG binding to the neonatal Fc receptor (FcRn) allows for endosomal recycling and prolonged serum half-life. To augment the effector functions or half-life of an IgG1 mAb, we constructed a novel “2Fc” mAb containing two Fc domains in addition to the normal two Fab domains. Structural and functional characterization of this 2Fc mAb demonstrated that it exists in a tetrahedral-like geometry and retains binding capacity via the Fab domains. Furthermore, duplication of the Fc region significantly enhanced avidity for Fc receptors FcγRI, FcγRIIIa, and FcRn, which manifested as a decrease in complex dissociation rate that was more pronounced at higher densities of receptor. At intermediate receptor density, the dissociation rate for Fc receptors was decreased 6- to 130-fold, resulting in apparent affinity increases of 7- to 42-fold. Stoichiometric analysis confirmed that each 2Fc mAb may simultaneously bind two molecules of FcγRI or four molecules of FcRn, which is double the stoichiometry of a wild-type mAb. In summary, duplication of the IgG Fc region allows for increased avidity to Fc receptors that could translate into clinically relevant enhancement of effector functions or pharmacokinetics.  相似文献   

11.
R24, a mouse IgG3 mAb against GD3 ganglioside, was shown to bind to itself in a homophilic manner. This was demonstrated by augmented binding of 125I-labeled R24 to the cell surface of GD3+ cells by unlabeled R24 and by direct binding of biotinylated R24 to R24 adsorbed on solid phase. Although homophilic binding was evident when R24 was bound to solid phase, R24-R24 aggregates could not be detected in solution under otherwise identical conditions. R24 bound to four other mAb (two IgG3, one IgG2a, one IgM) directed against GD3 but did not bind to a panel of 21 other mAb including other IgG3 mAb and mAb directed against non-GD3 ganglioside. Evidence implicating the GD3-binding site of R24 in homophilic binding included the following observations: 1) F(ab')2 fragments of R24 could bind to R24, 2) an antiidiotypic mAb against the GD3-binding site of R24 inhibited R24 homophilic binding, 3) an IgM anti-GD3 mAb also demonstrated homophilic binding to R24, and 4) homophilic binding was a function of immunoreactivity and avidity for GD3. R24 variants with 40-fold lower avidity for GD3 demonstrated a similar decrease in homophilic binding. Inasmuch as R24 bound to R24 F(ab')2 fragments and specifically to anti-GD3 mAb, it appeared that the target for homophilic binding was an epitope within the V region of anti-GD3 mAb. It is likely that homophilic interactions result in increased affinity of R24 for GD3 through increased effective valency of antibody-Ag complexes.  相似文献   

12.
Antibodies can direct tumor cell lysis by activating complement-mediated and cell-mediated cytoxicities (antibody-dependent cell-mediated cytotoxicity, ADCC). Clinical translation of these effects into successful cancer therapy has been slow. Choosing an appropriate animal model to test new therapeutic strategies is difficult because of species differences in immunological effector functions. In previous work, we found that an unmodified anti-ganglioside mouse IgG3 monoclonal antibody (mAb), 3F8, could successfully treat clinical tumors in humans and experimental tumors in rats but not experimental tumors in mice. We explored the reasons for this species difference by performing in vitro antibody-dependent cytotoxicity assays comparing the potency of polymorphonuclear neutrophils (PMN), natural killer (NK) cells and complement from the three species: mouse, rat and human. 3F8-dependent complement-mediated cytotoxicity produced more than 70% specific release when human and rat sera were used and only 20% with mouse serum. PMN-mediated ADCC was 35%–70% with human effectors, 25%–60% with rat and undetectable with mouse. Human eosinophils did not contribute to this ADCC. Cytotoxicity utilizing interleukin-2-activated NK cells was antibody-independent in all three species but the specific release was 60%–70% with human and rat NK cells and 10% with mouse NK cells. These data suggest that, for mouse IgG3, the rat may provide a more relevant rodent model than the mouse for testing the in vivo antitumor effects of monoclonal antibodies. Received: 20 January 2000 / Accepted: 24 March 2000  相似文献   

13.
 Superantigens such as the staphylococcal enterotoxin A (SEA) are among the most potent T cell activators known. They bind to major histocompatibility complex (MHC) class II molecules and interact with T cells depending on their T cell receptor (TCR) Vβ expression. Superantigens also induce a variety of cytokines and trigger a direct cytotoxic effect against MHC-class-II-positive target cells. In order to extend superantigen-dependent cell-mediated cytotoxicity (SDCC) to MHC-class-II-negative neuroblastoma cells, SEA was linked to the anti-ganglioside GD2 human/mouse chimeric monoclonal antibody (mAb) ch14.18. Ganglioside GD2 is expressed on most tumours of neuroectodermal origin but is expressed to a lesser extent on normal tissues. The linkage of ch14.18 to SEA was achieved either with a protein-A–SEA fusion protein or by chemical coupling. Both constructs induced T-cell-mediated cytotoxicity towards GD2-positive neuroblastoma cells in an effector-to-target(E:T)-ratio-and dose-dependent manner in vitro. To reduce the MHC class II affinity of SEA, a point mutation was introduced in the SEA gene (SEAm9) that resulted in 1000-fold less T cell killing of MHC-class-II-expressing cells as compared to native SEA. However, a protein-A–SEAm9 fusion protein mediated cytotoxicity similar to that of protein-A–SEA on ch14.18-coated, MHC-class-II-negative neuroblastoma cells. Taken together, these findings suggest that superantigen-dependent and monoclonal-antibody-targeted lysis may be a potent novel approach for neuroblastoma therapy. Received: 15 March 1995 / Accepted: 22 May 1995  相似文献   

14.
 T cell triggering can be achieved by monoclonal antibodies (mAbs) specific for the CD3/TcR complex. In the presence of appropriate costimulation and/or progression factors, such triggering permits the generation of effector cells for immunotherapy protocols involving the redirection of T cell lysis against tumor cells by mAbs bispecific for anti-CD3/anti-tumor cells (bs-mAbs). Focusing our analysis on the clinically relevant bs-mAb OC/TR, we found that bs-mAbs generated with the same anti tumor specificity, but two other anti-CD3 mAbs, TR66 and OKT3, have the same and a significantly lower lytic potential, respectively, compared with that of OC/TR. To evaluate the relevance of the anti-CD3 component, we examined several anti-CD3 mAbs with respect to binding parameters and the ability to trigger T lymphocytes. Competitive binding assays suggested that all anti-CD3 mAbs recognized the same or overlapping epitopes, although mAbs BMA030 and OC/TR bound with lower avidity than did αCD3 (the bivalent anti-CD3 mAb produced by the hybrid hybridoma OC/TR), TR66 and OKT3, as determined by measurement of the affinity constants. In all lymphocyte populations examined, which included resting peripheral blood mononuclear cells (PBMC), activated PBMC and T cell clones, OKT3, BMA033 and OC/TR failed to mobilize Ca2+ without cross-linking, whereas αCD3, in both murine and murine-human chimeric versions, TR66 and BMA030, did not require cross-linking. The ability to induce CD3 modulation was associated in part with the induction of Ca2+ fluxes. Despite the differences in the behavior of these mAbs in triggering the events that precede proliferation, all of them ultimately led to expression of the IL-2 receptor and to proliferation in T cells in the presence of accessory cells. Our data suggest that anti-CD3 mAbs that bind more rapidly (strong Ca2+ mobilizers) and more tightly under physiological conditions are good candidates for retargeting T cells in the bs-mAb clinical application. Received: 2 January 1997 / Accepted: 6 February 1997  相似文献   

15.
Gangliosides, sialic acid-bearing glycosphingolipids, are highly enriched in the vertebrate nervous system. Anti-ganglioside antibodies are associated with various human neuropathies, although the pathogenicity of these antibodies remains unproven. Testing the pathogenic role of anti-ganglioside antibodies will be facilitated by developing high-affinity IgG-class complement-fixing monoclonal anti-bodies against major brain gangliosides, a goal that has been difficult to achieve. In this study, mice lacking complex gangliosides were used as immune-naive hosts to raise anti-ganglioside antibodies. Wild-type mice and knockout mice with a disrupted gene for GM2/GD2 synthase (UDP-N-acetyl-D-galactosamine : GM3/GD3 N-acetyl-D-glactosaminyltransferase) were immunized with GD1a conjugated to keyhole limpet hemocyanin. The knockout mice produced a vigorous anti-GD1a IgG response, whereas wildtype littermates failed to do so. Fusion of spleen cells from an immunized knockout mouse with myeloma cells yielded numerous IgG anti-GD1a antibody-producing colonies. Ganglioside binding studies revealed two specificity classes; one colony representing each class was cloned and characterized. High-affinity monoclonal antibody was produced by each hybridoma : an IgG1 that bound nearly exclusively to GD1a and an IgG2b that bound GD1a, GT1b, and GT1aalpha. Both antibodies readily readily detected gangliosides via ELISA, TLC immune overlay, immunohistochemistry, and immunocytochemistry. In contrast to prior reports using anti-GD1a and anti-GT1b IgM class monoclonal antibodies, the new antibodies bound avidly to granule neurons in brain tissue sections and cell cultures. Mice lacking complex gangliosides are improved hosts for raising high-affinity, high-titer anti-ganglioside IgG antibodies for probing for the distribution and physiology of gangliosides and the pathophysiology of anti-ganglioside antibodies.  相似文献   

16.
KM871 is a chimeric antibody recognizing ganglioside GD3, which is one of the major gangliosides expressed on the cell surface of human tumors of neuroectodermal origin. This study demonstrates the antitumor activity of KM871 against human melanoma xenografts in nude mice, and analyzes the effector function operating in mice. In a well-established tumor model, KM871 showed antitumor activity against H-15 and SK-MEL-28 human melanoma but not against H-187 and G361 human melanoma when administered intravenously 5 days/week for 2 weeks. The G361 tumor became sensitive when KM871 was first administered on the day of tumor inoculation. In this assay, it was observed that almost all the mice were tumor-free, but a few mice developed tumors. Therefore, we examined the amount and expression pattern of GD3 antigen on G361 tumors escaping from KM871 treatment, but no change was observed. Next we examined the optimal administration schedule for KM871 in mice, using H-15 melanoma. KM871 showed antitumor activity when administered intravenously either 5 days/week for 2 weeks or three biweekly doses. However, the effect of the former schedule was stronger than three biweekly doses. To compare the effector function in humans and mice, we studied the complement-mediated cytotoxicity, antibody-dependent cell-mediated cytotoxicity and antibody-dependent macrophage-mediated cytotoxicity of KM871 using complement or effector cells prepared from humans and mice. It was found that the antibody-dependent cell-mediated cytotoxicity exerted by polymorphonuclear cells and antibody-dependent macrophage-mediated cytotoxicity were the only antitumor mechanism of KM871 in mice. However their action was very weak compared with that in humans, and complement-mediated cytotoxicity, which was strong in humans, was not observed in mice. Therefore, the antitumor activity of KM871 against human melanomas evaluated by the nude mouse model might be underestimated. These results indicate that KM871 shows good antitumor activity against GD3-positive human melanoma and the antitumor activity expected in humans might be superior to that of the nude mouse model. Received: 10 July 1999 / Accepted: 21 January 2000  相似文献   

17.
The GD2 ganglioside expressed on neuroectodermal tumor cells has been used as a target for passive and active immunotherapy in patients with malignant melanoma and neuroblastoma. We have reported that immunization of mice with a 47-LDA mimotope of GD2, isolated from a phage display peptide library with anti-GD2 mAb 14G2a, induces MHC class I-restricted CD8(+) T cell responses to syngeneic neuroblastoma tumor cells. The cytotoxic activity of the vaccine-induced CTLs was independent of GD2 expression, suggesting recognition of a novel tumor-associated Ag cross-reacting with 47-LDA. Glycan microarray and immunoblotting studies using 14G2a mAb demonstrated that this Ab is highly specific for the entire carbohydrate motif of GD2 but also cross-reacts with a 105 kDa glycoprotein expressed by GD2(+) and GD2(-) neuroblastoma and melanoma cells. Functional studies of tumor cells grown in three-dimensional collagen cultures with 14G2a mAb showed decreases in matrix metalloproteinase-2 activation, a process regulated by the 105 kDa-activated leukocyte cell adhesion molecule (ALCAM/CD166). A recombinant CD166 glycoprotein was shown to be recognized by 14G2a Ab and inhibition of CD166 expression by RNA interference ablated the cell sensitivity to lysis by 47-LDA-induced CD8(+) T cells in vitro and in vivo. The binding of 14G2a to CD166 was not disruptable by a variety of exo- and endo-glycosidases, implying recognition of a non-glycan epitope on CD166. These results suggest that the vaccine-induced CTLs recognize a 47-LDA cross-reactive epitope expressed by CD166, and reveal a novel mechanism of induction of potent tumor-specific cellular responses by mimotopes of tumor-associated carbohydrate Ags.  相似文献   

18.
Anti-GD2 ganglioside antibodies could be a promising, novel therapeutic approach to the eradication of human small cell lung cancers, as anti-GD2 monoclonal antibodies (mAbs) induced apoptosis of small cell lung cancer cells in culture. In this study, we analyzed the mechanisms for the apoptosis of these cells by anti-GD2 mAbs and elucidated the mechanisms by which apoptosis signals were transduced via reduction in the phosphorylation levels of focal adhesion kinase (FAK) and the activation of a MAPK family member, p38, upon the antibody binding. Knock down of FAK resulted in apoptosis and p38 activation. The inhibition of p38 activity blocked antibody-induced apoptosis, indicating that p38 is involved in this process. Immunoprecipitation-immunoblotting analysis of immune precipitates with anti-FAK or anti-integrin antibodies using an anti-GD2 mAb revealed that GD2 could be precipitated with integrin and/or FAK. These results suggested that GD2, integrin, and FAK form a huge molecular complex across the plasma membrane. Taken together with the fact that GD2+ cells showed marked detachment from the plate during apoptosis, GD2+ small cell lung cancer cells seemed to undergo anoikis through the conformational changes of integrin molecules and subsequent FAK dephosphorylation.  相似文献   

19.
Ganglioside GD2 is highly expressed on neuroectodermal tumors and an attractive therapeutic target for antibodies that have already shown some clinical efficacy. To further improve the current antibodies, which have modest affinity, we sought to improve affinity by using a combined method of random mutagenesis and in silico assisted design to affinity-mature the anti-GD2 monoclonal antibody hu3F8. Using yeast display, mutants in the Fv with enhanced binding over the parental clone were FACS-sorted and cloned. In silico modeling identified the minimal key interacting residues involved in the important charged interactions with the sialic acid groups of GD2. Two mutations, D32H (L-CDR1) and E1K (L-FR1) altered the electrostatic surface potential of the antigen binding site, allowing for an increase in positive charge to enhance the interaction with the negatively charged GD2-pentasaccharide headgroup. Purified scFv and IgG mutant forms were then tested for antigen specificity by ELISA, for tissue specificity by immunohistochemistry, for affinity by BIACORE, for antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity in vitro, and for anti-tumor efficacy in xenografted humanized mice. The nearly 7-fold improvement in affinity of hu3F8 with a single D32H (L-CDR1) mutation translated into a ∼12-fold improvement in NK92MI-transfected CD16-mediated ADCC, a 6-fold improvement in CD32-mediated ADCC, and a 2.5-fold improvement in complement-mediated cytotoxicity while maintaining restricted normal tissue cross-reactivity and achieving substantial improvement in tumor ablation in vivo. Despite increasing GD2 affinity, the double mutation D32H (L-CDR1) and E1K (L-FR1) did not further improve anti-tumor efficacy.  相似文献   

20.
The translocation of heat shock protein 70 (mHsp70) into the plasma membrane has been found to be associated with various cancers including breast cancer, head-and-neck cancer, and acute myeloid leukemia. Parts of the C-terminal substrate-binding domain (SBD) of mHsp70 are accessible to binding by monoclonal antibodies (mAb). One of these mAbs, cmHsp70.1, has been extensively studied and showed promising results as diagnostic and therapeutic antibody. Here, we describe cloning and humanization of cmHsp70.1 by complementarity determining region grafting resulting in an antibody (humex) possessing a similar affinity (3 nM) as the parental antibody and an improved production and thermal stability. Epitope mapping confirmed that the parental, chimeric, and humanized antibodies recognize the same region including amino acids 473–504 of the SBD. Hence, this humanized antibody provides a basis for further development of an anti-mHsp70 antibody therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号