首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

Reference genes, which are often referred to housekeeping genes, are frequently used to normalize mRNA levels between different samples. However the expression level of these genes may vary among tissues or cells, and may change under certain circumstances. Thus the selection of reference gene(s) is critical for gene expression studies. For this purpose, 10 commonly used housekeeping genes were investigated in isolated human neutrophils.  相似文献   

2.

Background  

Reference genes are frequently used to normalise mRNA levels between different samples. The expression level of these genes, however, may vary between tissues or cells and may change under certain circumstances. Cytoskeleton genes have served as multifunctional tools for experimental studies as reference genes. Our previous studies have demonstrated that the expression of vimentin, one cytoskeletal protein, was increased in ultraviolet B (UVB)-irradiated fibroblasts. Thus, we examined the expression of other cytoskeleton protein genes, ACTB (actin, beta), TUBA1A (tubulin, alpha 1a), and TUBB1 (tubulin, beta 1), in human dermal fibroblasts irradiated by UVB to determine which of these candidates were the most appropriate reference genes.  相似文献   

3.
4.

Background  

Control genes, which are often referred to as housekeeping genes, are frequently used to normalise mRNA levels between different samples. However, the expression level of these genes may vary among tissues or cells and may change under certain circumstances. Thus, the selection of housekeeping genes is critical for gene expression studies. To address this issue, 7 candidate housekeeping genes including several commonly used ones were investigated in isolated human reticulocytes. For this, a simple ΔCt approach was employed by comparing relative expression of 'pairs of genes' within each sample. On this basis, stability of the candidate housekeeping genes was ranked according to repeatability of the gene expression differences among 31 samples.  相似文献   

5.

Background  

Flatfish metamorphosis involves major physiological and morphological changes. Due to its importance in aquaculture and as a model for developmental studies, some gene expression studies have focused on the understanding of this process using quantitative real-time PCR (qRT-PCR) technique. Therefore, adequate reference genes for accurate normalization are required.  相似文献   

6.
7.
8.
9.
Quantitative real-time polymerase chain reaction (qRT-PCR) has been extensively used in several plant species as an accurate technique for gene expression analysis. However, the expression level of a target gene may be misconstrued due to unstable expression of the reference genes under different experimental conditions. Therefore, it is necessary to systematically evaluate these reference genes before experiments are conducted. Recently, more and more studies have focused on gene expression in pepper (Capsicum annuum L.). In this study, ten putative reference genes were chosen to identify expression stability by using geNorm and NormFinder statistical algorithms in ten different pepper sample pools, including those from different plant tissues (root, stem, leaf and flower) and from plants treated with hormones (salicylic acid and gibberellic acid) and abiotic stresses (cold, heat, salt and drought). EF1?? and UEP exhibited the most stable expression across all of the tested pepper samples. For abiotic stress or different hormone treatment, the ranking of candidate reference genes was not completely consistent, except for EF1?? which showed a relatively stable expression level. For different tissues, the expression of Actin1 was stable and it was considered an appropriate reference gene. It is concluded that EF1??, UEP and Actin1 are suitable reference genes for reliable qRT-PCR data normalization for the tissues and experimental conditions used in this experiment.  相似文献   

10.
11.
12.
13.
Selection of the most stable reference gene is critical for a reliable interpretation of gene expression data using RT-PCR. In order so, 17 commonly used genes were analyzed in Wistar rat duodenum, jejunum, ileum and liver following a fat gavage and at two time periods. These reference genes were also tested in liver from Zucker (fa/fa) on a long-term dietary trial. Four strategies were used to select the most suitable reference gene for each tissue: ranking according to biological coefficient of variation and further validation by statistical comparison among groups, geNorm, NormFinder and BestKeeper programs. No agreement was observed among these approaches for a particular gene, nor a common gene for all tissues. Furthermore we demonstrated that normalising using an inadequate reference conveyed into false negative and positive results. The selection of genes provided by BestKeeper resulted in more reliable results than the other statistical packages. According to this program, Tbp, Ubc, Hprt and Rn18s were the best reference genes for duodenum, jejunum, ileum and liver, respectively following a fat gavage in Wistar rats and Rn18s for liver in another rat strain on a long-term dietary intervention. Therefore, BestKeeper is highly recommendable to select the most stable gene to be used as internal standard and the selection of a specific reference expression gene requires a validation for each tissue and experimental design.  相似文献   

14.
This study was aimed to test a panel of six housekeeping genes (GAPDH, HPRT1, POLR2A, RPLP0, ACTB, and H3F) so as to identify and validate the most suitable reference genes for expression studies in astrocytomas. GAPDH was the most stable and HPRT1 was the least stable reference gene. The effect of reference gene selection on quantitative real-time polymerase chain reaction data interpretation was demonstrated, normalizing the expression data of a selected gene of interest. Thus, GAPDH may be recommended for data normalization in gene expression studies in astrocytomas. Nevertheless, a preliminary validation of reference gene stability is required prior to every study.  相似文献   

15.
Gene expression studies are fundamental to understand the molecular basis of severe malformations in fish development, particularly under aquaculture conditions. Real-time PCR (qPCR) is the most accurate method of quantifying gene expression, provided that suitable endogenous controls are used to normalize the data. To date, no reference genes have been validated for developmental gene expression studies in Atlantic halibut (Hippoglossus hippoglossus). We have determined the expression profiles of 6 candidate reference genes (Actb, Eef2, Fau, Gapdh, Tubb2 and 18S rRNA) in 6 embryonic and 5 larval stages of Atlantic halibut development. There were significant changes in expression levels throughout development, which stress the importance and complexity of finding appropriate reference genes. The three software applications (BestKeeper, geNorm and NormFinder) used to evaluate the stability of potential reference genes produced comparable results. Tubb2 and Actb were the most stable genes across the different developmental stages, whereas 18S rRNA and Gapdh were the most variable genes and thus inappropriate to use as reference genes. According to geNorm and NormFinder, the best two-gene normalization factors corresponded to the geometric average of Tubb2/Actb and Tbb2/Fau, respectively. We believe that either of these normalization factors can be used for future developmental gene expression studies in Atlantic halibut.  相似文献   

16.

Key message

The stability of candidate reference genes was evaluated in maize landrace varieties and during multiple grain developmental stages to evaluate the expression of carotenoid-related genes by RT-qPCR for application to maize biofortification.

Abstract

Vitamin A deficiency affects millions of children worldwide; therefore, increasing the content of vitamin A precursors in maize grains is of interest. The study of the expression of genes involved in the carotenoid biosynthetic pathway in maize grains has provided useful information for metabolic engineering approaches. However, reliable results using real-time quantitative polymerase chain reaction (RT-qPCR) experiments are dependent on the use of the appropriate reference genes. In this study, we utilized geNorm and NormFinder softwares to identify the most stably expressed candidate reference genes in samples from seven stages of grain development and from eight landrace varieties. The results of the analysis performed using geNorm indicated that tubulin (TUB) and actin (ACT) were the most suitable reference genes among all experimental conditions, while glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) showed the least stability. The same result was obtained with the NormFinder software. The minimum number of genes required in each experimental condition to normalize the gene expression data was also determined by geNorm. The expression of phytoene synthase gene (PSY1), the first enzyme in the carotenoid biosynthetic pathway, was overestimated when the least stable candidate gene (GAPDH) was used as the internal control instead of the most stable gene pair (ACT + TUB), thus highlighting the importance of validating reference genes before conducting a RT-qPCR experiment to obtain accurate results. This study is the first survey of the stability of genes for use as reference genes to normalize RT-qPCR data from maize landraces during multiple stages of grain development.  相似文献   

17.
The process of selection and validation of reference genes is the first step in studies of gene expression by real-time quantitative polymerase chain reaction (RT-qPCR). The genome of lettuce, the most popular leaf vegetable cultivated worldwide, has recently been sequenced; therefore, suitable reference genes for reliable results in RT-qPCR analyses are required. In the present study, 17 candidate reference genes were selected, and their expression stability in lettuce leaves under drought, salt, heavy metal, and UV-C irradiation conditions and under the application of abscisic acid (ABA) was evaluated using geNorm and NormFinder software. The candidate reference genes included protein-coding traditional and novel reference genes and microRNAs (miRNAs). The results indicate that the expression stability is dependent on the experimental conditions. The novel protein-coding reference genes were more suitable than the traditional reference genes under drought, UV-C irradiation, and heavy metal conditions and under the application of ABA. Only under salinity conditions were the traditional protein-coding reference genes more stable than the novel genes. In addition, the miRNAs, mainly MIR169, MIR171/170 and MIR172, were stably expressed under the abiotic stresses evaluated, representing a suitable alternative approach for gene expression data normalization. The expression of phenylalanine ammonia lyase (PAL) and 4-hydroxyphenylpyruvate dioxygenase (HPPD) was used to further confirm the validated protein-coding reference genes, and the expression of MIR172 and MIR398 was used to confirm the validated miRNA genes, showing that the use of an inappropriate reference gene induces erroneous results. This work is the first survey of the stability of reference genes in lettuce and provides guidelines to obtain more accurate RT-qPCR results in lettuce studies.  相似文献   

18.
19.
ABSTRACT: BACKGROUND: The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR) is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata. RESULTS: The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25) remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1a, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4) were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-[increment][increment]CT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-[increment][increment]CT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13) as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such experiments. CONCLUSIONS: We recommend the use of RDN5.8, UBC13, and PGK1 alone or the combination of RDN5.8 plus UBC13 or PGK1 as reference genes for RT-qPCR analysis of gene expression in C. glabrata following azole treatment. In contrast, we show that ACT1 and other commonly used reference genes (GAPDH, PPIA, RPL13A, TUB1, etc.) were not validated as good internal controls in the current model.  相似文献   

20.
Quantitative real-time polymerase chain reaction (QRT-PCR) has become one of the most widely used methods for gene expression analysis. However, the expression profile of a target gene may be misinterpreted due to unstable expression of the reference genes under different experimental conditions. Thus, a systematic evaluation of these reference genes is necessary before experiments are performed. In this study, 10 putative reference genes were chosen for identifying expression stability using geNorm, NormFinder, and BestKeeper statistical algorithms in 12 different cucumber sample pools, including those from different plant tissues and from plants treated with hormones and abiotic stresses. EF1α and UBI-ep exhibited the most stable expression across all of the tested cucumber samples. In different tissues, in addition to expression of EF1α and UBI-ep, the expression of TUA was also stable and was considered as an appropriate reference gene. Evaluation of samples treated with different hormones revealed that TUA and UBI-ep were the most stably expressed genes. However, for abiotic stress treatments, only EF1α showed a relatively stable expression level. In conclusion, TUA, UBI-ep, and EF1α will be particularly helpful for reliable QRT-PCR data normalization in these types of samples. This study also provides guidelines for selecting different reference genes under different conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号