首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wavelike pattern of fetal T cell neogenesis is largely determined by the intermittent generation and exportation of waves of prothymocytes by the hemopoietic tissues in coordination with their gated importation by the thymus. Having previously shown that the importation of prothymocytes by the adult mouse thymus is also gated and that thymocytopoiesis proceeds in discrete (albeit overlapping) waves, we now demonstrate that prothymocytes are periodically exported in saturating numbers from the adult mouse bone marrow. Experiments in normal, radioablated, and parabiotic mice document the cyclical accumulation (3-5 wk) of prothymocytes in both the steady state and regenerating bone marrow, followed by their release into the blood approximately 1 wk before intrathymic gate opening. The results also show that circulating donor-origin thymocyte precursors can transiently ( approximately 1 wk) establish high level chimerism in the bone marrow after the mobilization of endogenous prothymocytes, presumably by occupying vacated microenvironmental niches. Hence, by analogy with the fetal state, we posit the existence of a feedback loop whereby diffusible chemokines of thymic origin regulate the production and/or release of bone marrow prothymocytes during each period of thymic receptivity. Because each resulting wave of thymocytopoiesis is accompanied by a wave of intrathymic dendritic cell formation, these coordinated events may help to optimize thymocyte selection as well as production.  相似文献   

2.
Although a variety of lymphoid and myeloid precursors can generate thymic dendritic cells (DCs) under defined experimental conditions, the developmental origin(s) of DCs in the steady state thymus is unknown. Having previously used selective combinations of normal, parabiotic, and radioablated mice to demonstrate that blood-borne prothymocytes are imported in a gated and competitive manner, we used a similar approach in this study to investigate the importation of the hematogenous precursors of thymic DCs. The results indicate that two developmentally distinct populations of DC precursors normally enter the adult mouse thymus. The first population is indistinguishable from prothymocytes according to the following criteria: 1) inefficient (<20%) exchange between parabiotic partners; 2) gated importation by the thymus; 3) competitive antagonism for intrathymic niches; 4) temporally linked generation of thymocytes and CD8alpha(high) DCs; and 5) absence from prothymocyte-poor blood samples. The second population differs diametrically from prothymocytes in each of these properties, and appears to enter the thymus in at least a partially differentiated state. The resulting population of DCs has a CD8alpha(-/low) phenotype, and constitutes approximately 50% of total thymic DCs. The presence of two discrete populations of DCs in the steady state thymus implies functional heterogeneity consistent with evidence implicating lymphoid DCs in the negative selection of effector thymocytes and myeloid DCs in the positive selection of regulatory thymocytes.  相似文献   

3.
It is well recognized that the bone marrow contains cells that can repopulate a depleted thymus as well as cells that can be induced to express phenotypic markers characteristic of T cells. It is not known, however, to what extent thymocytopoiesis in the normal thymus relies on immigrant, bone marrow-derived cells, nor whether some T cell precursors have entered the bone marrow from the circulation. We used the parabiotic system to test whether thymocytopoiesis relies on progenitors intrinsic to the thymus or on cells that enter the organ from the circulation. In the same system, we have also investigated whether Thy-1- bone marrow lymphocytes that respond to phytohemagglutinin (PHA) by proliferation and Thy-1 expression are produced by myelogenous or hematogenous progenitors. Syngeneic CBA/HT6 and CBA/CaJ mice were joined in parabiotic union at 4-6 weeks of age. Cross circulation between the two partners was verified by the equilibration of Evans' blue dye injected into one partner and by the equilibration of PHA-responsive T cells in the spleen of the parabionts. Chromosome spreads were prepared from the PHA-stimulated T cell-depleted bone marrow and from spontaneously proliferating thymocytes as well as from thymocytes stimulated by PHA or Concanavalin A (Con A). The exchange of spleen colony-forming units (CFU-S) in the femoral marrow was assessed by karyotyping individual spleen colonies. Regardless of the length of parabiotic union, ranging from 4 to 20 weeks, Thy-1-, PHA-responsive bond marrow lymphocytes remained predominantly of the host type with only 3% being derived from the opposite partner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The immigration route of thymocyte precursors into the thymic microenvironment was examined in various experiments using two strains of mice (B10.Thy-1.1 and C57BL/6) that were identical in H-2 and different in Thy-1 locus. The experiment of thymus grafting revealed that there were two types of thymocyte precursors; one immigrated into the cortex and vigorously proliferated and the other directly immigrated into the medulla. Such a direct immigration of host-type cells into the medulla of the grafted thymus was not observed, when thymus was grafted into young adult nude mice having no T cells. When bone marrow cells were iv injected into intact mice, the direct immigration of donor-type cells was observed only in the cortex, not in the medulla. In parabiotic mice, the immigration of partner's cells into the medulla was observed independently before the proliferation of partner's cell in the cortex. These findings taken together indicate that peripheral T cells directly immigrate into and recirculate through the thymic medulla.  相似文献   

5.
T-cell precursors (pre-T cells) traditionally have been detected by their ability to repopulate the thymus of heavily irradiated mice following intravenous injection. Recently, an assay system involving the direct injection of pre-T cells into the thymus of sublethally irradiated animals has been described. Here we report the results of experiments designed to evaluate the ability of bone marrow cells to produce thymic repopulation following intrathymic injection in a wide range of donor-host strain combinations. Irradiated (600 R) mice were injected intrathymically with 2 X 10(6) bone marrow cells which differed from the recipient with respect to their Thy-1 allotype and the percentage of thymus cells expressing either donor- or recipient-type Thy-1 was determined 9 to 23 days after injection. The results of these experiments showed that thymocytes expressing the Thy-1 allotype derived from the donor marrow were only detected when the donor and host were matched at MHC. By contrast, thymic repopulation by MHC-mismatched donor marrow cells could readily be observed when these cells were given intravenously.  相似文献   

6.
In C57BL/Ka mice, leukemogenic fractionated whole-body X-irradiation induces alterations of the lymphoepithelial interactions normally found in the Thymic Nurse Cells (TNCs) and leads to the disappearance of these complexes. This phenomenon is due to the disturbances of thymic lymphopoiesis caused by modifications of bone marrow prothymocytes and of the epithelial component of TNCs.  相似文献   

7.
In cyclophosphamide (CP)-induced tolerance, a long lasting skin allograft tolerance was established in many H-2-identical strain combinations without graft vs host disease. Destruction of donor-reactive T cells of host origin, followed by intrathymic clonal deletion of these cells, has been revealed to be the chief mechanisms of this system. Here, we studied the fate of host-reactive populations in donor-derived T cells of C3H/He (C3H) (H-2k, Mls-1b, Mls-2a) mice rendered CP-induced tolerant to AKR/J (AKR) (H-2k, Mls-1a, Mls-2b), by assessing AKR-derived Thy-1.1+ T cells bearing TCR V beta 3 that are specifically reactive with Mls-2a-encoded Ag of the recipient C3H mice. In the AKR-derived Thy-1.1+ lymph node cells of the C3H mice that had been treated with AKR spleen cells plus CP, CD4(+)-V beta 3+ T cells were obviously decreased by day 10 after the CP treatment. At this stage, the Thy-1.1+ T cells were not detected in the C3H thymus, suggesting that the obvious decrease of CD4(+)-V beta 3+ T cells of AKR origin was not due to intrathymic clonal deletion in the recipient C3H mice. Therefore, the destruction of the host-reactive mature T cells of donor origin, as well as that of the donor-reactive mature T cells of host origin, occurred by the CP treatment at the induction phase. Furthermore, after the establishment of intrathymic mixed chimerism in the recipient C3H mice, V beta 3+ T cells were not detected among the Thy-1.1+ T cells of AKR origin in the mixed chimeric thymus, suggesting that the host-reactive immature T cells repopulated from the injected donor hematopoietic cells were clonally deleted in the recipient thymus. These two mechanisms appear to prevent graft vs host disease in CP-induced tolerance.  相似文献   

8.
A profound thymic atrophy has been observed in mice bearing large adenocarcinomas of the mammary gland. Only 2 to 5% of thymocytes remained 4 wk after tumor implantation. Although there is a slight decrease in the overall percentages of Thy-1+ cells in tumor bearers, the majority of the remaining cells are of a Thy-1 low phenotype. There was a lower percentage of double positive (CD4+, CD8+) cells, an increase of CD4+ CD8- thymocytes, similar percentages of CD4- CD8+ cells and double negative (CD4- CD8-) thymocytes in tumor-bearing mice. In addition, an increased percentage of CD3 cells could be detected in these animals. These results indicate that proportionally less immature thymocytes are present in the atrophic thymuses of mammary tumor bearers. Enhanced levels of glucocorticoids are known to produce similar effects on the thymus. However, adrenalectomy of mice followed by tumor implantation did not result in reversal of the thymic atrophy. Furthermore, a study of serum corticosterone levels in tumor bearers indicated no significant changes during tumorigenesis. A study of several parameters of bone marrow (BM) populations indicate that there is an increase in cells of the granulocyte-macrophage lineage and a decrease in lymphocytes induced by tumor-derived granulocyte macrophage-CSF. An alteration of prothymocytes in the BM is not the main cause of the thymic atrophy because BM cells from normal and tumor-bearing mice reconstituted irradiated normal mice equally well. There was no preferential recruitment of double positive cells to the spleen as indicated by no significant differences in the levels of T cells of immature phenotype including the CD4+ CD8+ population in the spleens of tumor bearers. Because no major changes were observed in tumor bearers, either at their capacity to repopulate the thymus or at the patterns of subsequent redistribution of thymocytes, it was postulated that the thymic atrophy may be caused by a direct or indirect effect of the tumor or tumor-associated factor(s). Intrathymic injections of tumor cells into young normal recipient mice resulted in a significant reduction of the thymus weight and cellularity. These data suggest that mammary tumors can secrete factor(s) that are capable of severely impairing the normal development of cells of the T cell lineage.  相似文献   

9.
Phenotype and commitment of thymus-colonizing precursors are unknown. Here we report the identification of T lineage-committed precursors (designated prothymocytes) in murine fetal blood at day 15.5 of development. Fetal blood pro-thymocytes are Thy-1+c-kit(low)CD3- in contrast to fetal blood-derived pluripotent hematopoietic progenitors which are Thy-1-c-kit+. Upon transfer into the thymus, fetal blood pro-thymocytes generate a single wave of CD4+CD8+ thymocytes and subsequently mature TCR alpha beta+ peripheral T cells. However, fetal blood pro-thymocytes lack multipotent progenitor potential since they fail to reconstitute B lymphocytes and myeloid and erythroid lineages. In contrast, T and B lymphocytes as well as myeloid and erythroid lineages are reconstituted from fetal blood-derived pluripotent progenitors. Pro-thymocytes are equally present in peripheral blood of athymic fetal mice, suggesting that this novel precursor population is T lineage-committed prior to thymus colonization and represents the earliest T lineage precursor identified.  相似文献   

10.
Cellular events during the development of thymic lymphomas in young B10.BR mice given leukemogenic split-dose irradiation were studied by examining the differentiation of functional T lymphocyte precursors in the regenerating thymus. It was found that leukemogenic radiation treatment resulted in a sustained depression of the level of thymic cytotoxic T lymphocyte precursors (CTLp) and of mixed lymphocyte reactivity of thymus cells when assessed between 1 and 4 mo after irradiation, in spite of the fact that the total number of thymocytes was restored to the normal level within 2 mo and continued to increase thereafter. In vitro mixing studies of normal thymocytes with thymus cells from split-dose irradiated mice provided no evidence for active suppression as a mechanism for this depressed activity. The ability of bone marrow cells from split-dose irradiated mice to regenerate the thymus and to differentiate into functional CTLp was examined by use of supralethally irradiated Thy-1 congenic recipients. Reconstitution of supralethally irradiated B10.BR Thy-1.2 mice with normal bone marrow from B10.BR Thy-1.1 mice resulted in the complete repopulation of host-thymus with donor-derived cells when assessed at 4 wk after reconstitution. Lymphocytes from the regenerating thymus of these animals were shown to contain high levels of CTLp which were donor-derived. On the other hand, when the recipient mice were reconstituted with bone marrow cells from donor mice which had been split-dose irradiated 1 mo earlier, regeneration of the recipient thymus was severely depressed when assessed at 4 wk to 3 mo after reconstitution. Although variable but small numbers of donor-derived Thy-1+ cells were detected, CTL activity for alloantigen could not be induced in these donor-derived cells. The results suggest that T cell precursors derived from split-dose irradiated donor mice were unable to undergo active proliferation and differentiation into functional CTLp. The significance of these findings on radiation-induced thymic leukemogenesis is discussed.  相似文献   

11.
Using an intrathymic injection assay on B10 Thy-1 congenic mice, it was demonstrated that thymic prelymphoma cells first developed within the thymuses from 4 to 8 days after split-dose irradiation and were detected in more than 63% of the test donor thymuses when examined at 21 and 31 days after irradiation. Moreover, some mice (25%) at 2 mo after split-dose irradiation had already developed thymic lymphomas in their thymuses. To characterize these thymic prelymphoma cells, the thymocytes from B10 Thy-1.1 mice 1 mo after irradiation were stained with anti-CD4 and anti-CD8 mAb and were sorted into four subpopulations. These fractionated cells were injected into the recipient thymuses to examine which subpopulation contained thymic prelymphoma cells. The results indicated that thymic prelymphoma cells existed mainly in CD4- CD8- and CD4- CD8+ thymocyte subpopulations and also in CD4+ CD8+ subpopulation. T cell lymphomas derived from CD4- CD8- prelymphoma cells had mainly CD4- CD8- or CD4- CD8+ phenotypes. T cell lymphomas developed from CD4- CD8+ prelymphoma cells mainly expressed CD4- CD8+ or CD4+ CD8+ phenotype. T cell lymphomas originating from CD4+ CD8+ prelymphoma cells were mainly CD4+ CD8+ but some CD4- CD8+ or CD4+ CD8- cells were also present. These thymic prelymphoma cells were further characterized phenotypically in relation to their expression of the marker defined by the mAb against J11d marker and TL-2 (thymus-leukemia) Ag, which is not expressed on normal thymocytes of B10.Thy-1.2 or B10.Thy-1.1 strain, but appears on the thymocytes of lymphomagenic irradiated mice. The results indicated that the prelymphoma cells existed in J11d+, TL-2+ cells.  相似文献   

12.
Immune surveillance system can detect more efficiently secretory tumor-specific antigens, which are superior as a target for cancer immunotherapy. On the contrary, immune tolerance can be induced in the thymus when a tumor antigen is massively secreted into circulation. Thus, the secretion of tumor-specific antigen may have contradictory roles in tumor immunity in a context-dependent manner. However, it remains elusive on the precise cellular mechanism of intrathymic immune tolerance against tumor antigens. We previously demonstrated that a minor thymic conventional dendritic cell (cDC) subset, CD8α(-)Sirpα(+) cDCs, but not the major subset, CD8α(+)Sirpα(-) cDCs can selectively capture blood-borne antigens and crucially contribute to the self-tolerance. In the present study, we further demonstrated that Sirpα(+) cDCs can capture a blood-borne antigen leaking inside the interlobular vascular-rich regions (IVRs). Blood-borne antigen selectively captured by Sirpα(+) cDCs can induce antigen-specific Treg generation or negative selection, depending on the immunogenicity of the presented antigen. Furthermore, CCR2 expression by thymic Sirpα(+) cDCs and abundant expression of its ligands, particularly, CCL2 by tumor-bearing mice prompted us to examine the function of thymic Sirpα(+) cDCs in tumor-bearing mice. Interestingly, tumor-bearing mice deposited CCL2 inside IVRs in the thymus. Moreover, tumor formation induced the accumulation of Sirpα(+) cDCs in IVRs under the control of CCR2-CCL2 axis and enhanced their capacity to take up antigens, resulting in the shift from Treg differentiation to negative selection. Finally, intrathymic negative selection similarly ensued in CCR2-competent mice once the tumor-specific antigen was secreted into bloodstream. Thus, we demonstrated that thymic Sirpα(+) cDCs crucially contribute to this novel process of intrathymic tumor immune tolerance.  相似文献   

13.
Reduced expression of Ia antigens by thymic epithelial cells of aged mice   总被引:2,自引:0,他引:2  
Thymic Ia antigen expression was examined with biochemical and immunohistochemical techniques. We found that expression of Ia antigens was reduced in thymic tissue of aged mice and that much of this loss was associated with cortical thymic epithelial cells. The ontologic pattern of Ia antigen expression in the thymus closely followed that observed for thymic weight, reaching maximal values at 4 wk of age and declining thereafter.  相似文献   

14.
Chimeras were induced in doves (Streptopelia) by making parabionts of embryonating eggs that carried genes for erythrocyte antigens, which were readily identified. The parabiotic pairs were chosen so that new antigenic specificities would appear if somatic cell mating took place. However, no evidence of somatic cell mating was noted. Erythrocytic chimerism was no longer. detectable in some birds after varying periods of time. In a few others tolerance was presumably lost, since their plasma contained antibodies against cellular antigens that either were present, or had been present, in the bird's circulation.  相似文献   

15.
Mechanisms of cyclophosphamide (CP)-induced tolerance to class I (D) and class II (IE) alloantigens were studied. Transplantation tolerance across H-2D plus IE Ag-barriers has been achieved when B10.Thy-1.1 (Kb,IAb,IE-,Db; Thy-1.1) mice were primed i.v. with 9 x 10(7) spleen cells plus 3 x 10(7) bone marrow cells from B10.A(5R) mice (5R; kb,IAb,IEb,Dd; Thy-1.2) and treated i.p. with 200 mg/kg of CP 2 days later. The tolerant state in the early and the late stage was confirmed by prolonged acceptance of donor-type skin grafts, and in vitro unresponsiveness to donor Ag. In the tolerant B10.Thy-1.1 mice treated with 5R cells 28 days earlier and followed by CP, intrathymic clonal deletion of V beta 11+ T cells reactive to IE-encoded antigens was observed in association with intrathymic mixed chimerism. 5R skin survived, however, even after the clonal deletion of V beta 11+ T cells terminated by 180 days after tolerance induction. V beta 11+ T cells, which reappeared in the periphery of the recipient B10.Thy-1.1 mice bearing 5R skin at this stage, were not capable of proliferating in response to receptor cross-linking with V beta 11-specific mAb. Furthermore, the CTL activity against class I (Dd) alloantigens of spleen cells from these tolerant mice was restored by the addition of IL-2 to MLC. Thus, our experiments provide direct evidence that tolerance to both class I (Dd) and class II (IEb) alloantigens by clonal allergy occurs during the termination of intrathymic clonal deletion. These results clearly show practical hierarchy of the mechanisms of transplantation tolerance.  相似文献   

16.
Blood‐borne nucleated cells participate not only in inflammation, but in tissue repair and regeneration. Because progenitor and stem cell populations have a low concentration in the blood, the circulation kinetics and tissue distribution of these cells is largely unknown. An important approach to tracking cell lineage is the use of fluorescent tracers and parabiotic models of cross‐circulation. Here, we investigated the cross‐circulation and cell distribution kinetics of C57/B6 GFP+/wild‐type parabionts. Flow cytometry analysis of the peripheral blood after parabiosis demonstrated no evidence for a “parabiotic barrier” based on cell size or surface characterstics; all peripheral blood cell subpopulations in this study reached equilibrium within 14 days. Whole blood fluorescence analysis indicated that the mean exchange flow rate was 16 µl/h or 0.66% of the circulating blood volume per hour. Studies of peripheral lymphoid organs indicated differential cell distribution kinetics. Some subpopulations, such as CD8+ and CD11c+, equilibrated in both lymph nodes and spleen indicating a residence time <28 days; in contrast, other lymphocyte subpopulations, such as B220+ and CD4+ cells, had not yet reached equilibrium at 28 days. We conclude that parabiosis can provide important insights into defining tissue distribution, residence times, and recirculating pools using fluorochrome markers of cell lineage. J. Cell. Physiol. 227: 821–828, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
A high proportion of irradiated C57BL/6 mice inoculated with the radiation leukemia virus D-RadLV develop overt T-cell leukemias originating in the thymus. In unirradiated hosts the incidence is much lower. As early as 10 days after injection of D-RadLV the bone marrow contains “preleukemia” cells which, although not frankly leukemic, will develop into leukemia cells if transferred into a specially pretreated recipient mouse. In the present report, certain properties of D-RadLV-induced leukemia and preleukemia cells are compared. In this model system, leukemia cells express the T-cell surface component Thy-1 (Thy-1+) whereas preleukemia cells do not (Thy-1?). But preleukemia cells could be induced in vitro by thymopoietin or ubiquitin to become Thy-1+, suggesting that they are prothymocytes. Unlike leukemia cells, preleukemia cells injected into normal recipients immunized them against transplants of leukemias induced by the same D-RadLV virus. Evidently D-RadLV virus induces a critical change in prothymocytes which in a later (Thy-1+) phase of differentiation is manifest in overt leukemia transformation.  相似文献   

18.
A rat thymic epithelial cell line IT45-R1 has been previously described as secreting soluble molecules that in vitro chemoattract rat hemopoietic precursor cells. The development of such an in vitro migration assay was based on the ability of cells to migrate across polycarbonate filters in Boyden chambers. In the present paper, by using the same strategy, we studied murine bone marrow cells capable of migrating in vitro toward IT45-R1 conditioned medium. The responding cells were shown to represent a minor bone marrow subpopulation characterized by a low capacity to incorporate tritiated thymidine in vitro (less than 10% of control). Moreover, this cell subset was considerably impoverished with respect to granulocyte-macrophage CFU (less than 7% of control) and pluripotent hemopoietic stem cells (less than 12% of control). Potential generation of T cells of donor-type in the lymphoid organs of irradiated recipients was measured by using C57BL/Ka Thy-1.1 and Thy-1.2 congenic mice. Thy-1.1 irradiated mice were injected intrathymically or intravenously with the selectively migrated cell subset of Thy-1.2 donor-type bone marrow cells. The use of an i.v. transfer route allowed us to show that these cells possess thymus-homing and colonization abilities. In a time-course study after intrathymic cell transfer, these migrated cells were able to generate Thy-1.2+ donor-type thymocytes represented by all cortical and medullary cell subsets in a single wave of repopulation from day 20 to day 30 after transfer, with a peak around days 23 to 25. The degree of repopulation closely resembled that seen with unfractionated bone marrow cells in terms of absolute numbers of donor cells per thymus (82% of control, 22 x 10(6) Thy-1.2+ cells) as well as in percent donor cells per thymus (105% of control). Thy-1.2+ cells were also detected in the lymph nodes and the spleens of reconstituted recipient mice. Taken together, these results support the idea that the supernatant of the established thymic epithelium IT45-R1 induces the migration of a murine bone marrow subset that contains hemopoietic stem cells already committed to the lymphoid lineage (i.e., pre-T cells).  相似文献   

19.
SYNOPSIS. A state of immunological tolerance, or specific unresponsivenessto foreign antigen, can be induced in amphibians by joiningtwo nonsibling embryos in parabiotic union. The induced toleranceis immunologically specific; the co-partners are tolerant ofeach other' santigens but do respond to unrelated antigens fromthird parties. The parabionts are blood-cell chimeras; eachcontains blood elements of the type proper to the other. Thedegree of chimerism wanes in the later life of the parabionts,which may be the consequence of the appearance of a new cloneof uninhibited reactive cells derived from the bone marrow. Tolerance to a particular antigen is interpreted as arisingby the deletion of the population of competent lymphocytes capableof responding to that antigen. The breakdown of tolerance occursthrough the emergence of a new population of antigen-reactivecells. In essence, a tolerant cell as a discrete entity doesnot exist.  相似文献   

20.
Immunization of mice with sheep red blood cells (SRBC) or Escherichia coli lipopolysaccharide (LPS) induces the appearance of B memory cells in the thymus. In this paper the origin of these B memory cells was investigated. Therefore, mice primed with either SRBC or LPS 6 months previously and nonprimed mice were joined for parabiosis. Four weeks later the parabiotic mice were separated from each other. Another 3 weeks later thymus cells from the primed and nonprimed mice were transferred separately into lethally irradiated mice in order to determine the adoptive PFC response. It was found that the 4-week period of parabiosis could account for the appearance of a distinct population of B memory cells in the thymus of the nonprimed mice. This result suggest that the B memory cells which appear in the thymus belong to the pool of potentially circulating memory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号