首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence, structure, and glycosylation of lipoteichoic acids were studied in 15 Bacillus strains, including Bacillus cereus (4 strains), Bacillus subtilis (5 strains), Bacillus licheniformis (1 strain), Bacillus polymyxa (2 strains), and Bacillus circulans (3 strains). Whereas in the cells of B. polymyxa and B. circulans neither lipoteichoic acid nor related amphipathic polymer could be detected, the cells of other Bacillus strains were shown to contain lipoteichoic acids built up of poly(glycerol phosphate) backbone chains and hydrophobic anchors [gentiobiosyl(beta 1----1/3)diacylglycerol or monoacylglycerol]. The lipoteichoic acid chains of the B. licheniformis strain and three of the B. subtilis strains had N-acetylglucosamine side branches, but those of the B. cereus strains and the remaining two B. subtilis strains did not. The membranes of the B. licheniformis strain and the first three B. subtilis strains exhibited enzyme activities for the synthesis of beta-N-acetylglucosamine-P-polyprenol and for the transfer of N-acetylglucosamine from this glycolipid to endogenous acceptors presumed to be lipoteichoic acid precursors. In contrast, the membranes of the other strains lacked both or either of these two enzyme activities. The correlation between the occurrence of N-acetylglucosamine-linked lipoteichoic acids and the distribution of these enzymes is consistent with the previously proposed function of beta-N-acetylglucosamine-P-polyprenol as a glycosyl donor in the introduction of alpha-N-acetylglucosamine branches to lipoteichoic acid backbone chains.  相似文献   

2.
Incubation of UDP-[14C]galactose with membranes of Bacillus coagulans led to the formation of a radioactive glycolipid, which was tentatively characterized as beta-galactosyl phosphorylpolyprenol (Gal-P-prenol) on the basis of its chromatographic behavior and data from structural analysis of its sugar 1-phosphate moiety. The sugar moiety of [14C]Gal-P-prenol was shown to be incorporated into a membrane-bound polymer, which coincided with the diacyl form of lipoteichoic acid in its chromatographic behavior on columns of Sephacryl S-300, DEAE-Sephacel and octyl-Sepharose. Hydrogen fluoride hydrolysis of the polymer afforded an alpha-galactoside identical with Gal(alpha 1----2)Gro obtained from lipoteichoic acids. The incorporation of galactose residues from [14C]Gal-P-prenol into the polymer was greatly enhanced by exogenous lipoteichoic acids, especially of the diacyl and monoacyl forms. The optimal pH and metal concentration for the Gal-P-prenol formation, respectively, were found to be 8.4 and 10 mM (MgCl2), whereas those for the transfer of galactose from this lipid intermediate to polymer were 4.5 and 16 mM (CaCl2). The above results lead to the conclusion that Gal-P-prenol serves as the direct galactosyl donor in the synthesis of lipoteichoic acids in B. coagulans.  相似文献   

3.
The cell envelopes of serogroup C1 Salmonella, viz. S. thompson and S. montevideo, catalyze the transfer of radiolabeled sugars from UDP-[14C]Glc and UDP-[14C]GlcNAc into the lipid-linked sugars. Using TLC and DEAE-cellulose chromatography, the radiolabeled products were identified as polyprenyl pyrophosphate N-acetylglucosamine (I), polyprenyl monophosphate N-acetylglucosamine and polyprenyl monophosphate glucose. The derivative (I) served as an acceptor for mannose transfer from GDP-Man with formation of Man1-2GlcNAc1PPPre. A similar reaction was observed after addition of synthetic GlcNAc1PPPre to the cell envelopes.  相似文献   

4.
D-[alpha-14C]]glucosyl phosphorylpolyprenol ([ 14C]Glc-P-prenol) was formed from UDP-D-[14C]glucose in each of the membrane systems obtained from Bacillus coagulans AHU 1631 and AHU 1634 and two Bacillus megaterium strains. Membranes of these B. coagulans strains, which possess beta-D-glucosyl branches on the repeating units in their major cell wall teichoic acids, were shown to catalyze the transfer of the glucose residue from [14C]Glc-P-prenol to endogenous polymer. On the other hand, membranes of B. coagulans AHU 1366, which has no glucose substituents in the cell wall teichoic acid, exhibited neither [14C]Glc-P-prenol synthetase activity nor the activity of transferring glucose from [14C]Glc-P-prenol to endogenous acceptor. The enzyme which catalyzes the polymer glycosylation in the former two B. coagulans strains was most active at pH 5.5 and in the presence of the Mg2+ ion. The apparent Km for [14C]Glc-P-prenol was 0.6 microM. Hydrogen fluoride hydrolysis of the [14C]glucose-linked polymer product yielded a major fragment identical to D-galactosyl-alpha(1----2)(D-glucosyl-beta(1----1/3)) glycerol, the dephosphorylated repeating unit in the major cell wall teichoic acids of these B. coagulans strains. This result, together with the behavior of the radioactive polymer in chromatography on Sepharose CL-6B, DEAE-Sephacel, and Octyl-Sepharose CL-4B, led to the conclusion that [14C]Glc-P-prenol serves as an intermediate in the formation of beta-D-glucosyl branches on the polymer chains of cell wall teichoic acids in B. coagulans.  相似文献   

5.
Structural studies were carried out on lipoteichoic acids obtained from defatted cells of 10 Bacillus strains by phenol-water partition followed by chromatography on DEAE-Sephacel and Octyl-Sepharose columns. A group of the tested bacteria (group A), Bacillus subtilis, Bacillus licheniformis, and Bacillus pumilus, was shown to have a diacyl form of lipoteichoic acids which contained D-alanine, D-glucose, D-glucosamine, fatty acids, and glycerol in molar ratios to phosphorus of 0.35 to 0.69, 0.07 to 0.15 to 0.43, 0.06 to 0.11, and 0.95 to 1.18, respectively, whereas the other group (group B), Bacillus coagulans and Bacillus megaterium, had diacyl lipoteichoic acids which contained D-galactose, fatty acids, and glycerol in molar ratios to phosphorus of 0.05 to 0.42, 0.06 to 0.12, and 0.96 to 1.07, respectively. After treatment with 47% hydrogen fluoride, the lipoteichoic acids obtained from group A strains commonly gave a hydrophobic fragment, gentiobiosyl-beta (1----1 or 3)diacylglycerol, in addition to dephosphorylated repeating units, glycerol, 2-D-alanylglycerol, N-acetyl-D-glucosaminyl-alpha (1----2)glycerol, and D-alanyl-N-acetyl-D-glucosaminyl-alpha (1----2)glycerol, whereas the lipoteichoic acids from group B strains yielded diacylglycerol in addition to glycerol and D-galactosyl-alpha (1----2)glycerol. The results together with data from Smith degradations indicate that in the lipoteichoic acids of group A strains the polymer chains, made up of partially alanylated glycerol phosphate and glycosylglycerol phosphate units, are joined to the acylglycerol anchors through gentiobiose. However, in the lipoteichoic acids of group B strains, the partially galactosylated poly(glycerolphosphate) chains are believed to be directly linked to the acylglycerol anchors.  相似文献   

6.
Biosynthetic studies on an acidic polysaccharide, comprising galactose, rhamnose, N-acetylglucosamine and sn-glycerol 1-phosphate, were carried out with a membrane system obtained from Bacillus cereus AHU 1356. Incubation of the membranes with UDP-[14C]Gal, TDP-[14C]Rha and UDP-[14C]GlcNAc resulted in the formation of four or more labeled-sugar-linked lipids and a labeled polysaccharide. Data on structural analysis of the sugar moieties released from the glycolipids, together with results of enzymatic conversion of [14C]galactose-linked lipid and [14C]Rha-Gal-linked lipid to higher-oligosaccharide-linked lipids and polysaccharide, led to the conclusion that the acidic polysaccharide is probably synthesized through the following pathway: (sequence in text) The glycerophosphate residues seem to be derived from phosphatidylglycerol.  相似文献   

7.
An oligosaccharide-P-P-lipid has been isolated from porcine liver by extraction with organic solvents and purified by chromatography on silica gel and DEAE-cellulose. The purified oligosaccharide-lipid was shown to contain mannose and N-acetylglucosamine in an approximate ratio of 1:1 and our results suggest that the major oligosaccharide component in the preparation was a tetrasaccharide with the composition (Man)2 (GlcNAc)2. When the oligosaccharide-lipid was incubated with GDP-[14C]mannose and a solubilized enzyme preparation from rabbit liver in the presence of MgCl2, three radioactive products could be isolated. The oligosaccharides in the products could be identified as a penta-, a hexa-, and a heptasaccharide. These products were formed by the stepwise addition of mannose to the growing oligosaccharide chain and GDP-mannose was indicated as the glycosyl donor in each reaction.  相似文献   

8.
A particulate fraction from porcine aorta catalyzed the incorporation of N-acetylglucosamine (GlcNAc) from UDP-[3H]GlcNAc into both GlcNAc-pyrophosphorylpolyprenol and GlcNAc-GlcNAc-pyrophosphorylpolyprenol. This transfer utilized endogenous lipid and required a divalent cation. Mn2+ was the best metal ion and was optimum at 2.3 mM. This same particulate fraction was previously shown to transfer mannose from GDP-[14C]mannose to endogenous lipid to form mannosylphosphorylpolyprenol (Chambers, J., and Elbein, A.D. (1975) J. Biol. Chem. 250, 6904-6915). Both the GlcNAc activities and the mannose activity were solubilized by treatment of the particulate fraction with the detergent Nonidet P-40. The enzymes were partially purified by chromatography on DEAE-cellulose and on Sephadex G-200. These soluble enzymes required the addition of acceptor lipid for activity. An acidic lipid fraction, isolated from pig liver and having the properties of dolichyl phosphate, was active with either the GlcNAc or the mannose transferase. Chemically synthesized dolichyl phosphate was also active with either of these enzymes. The products formed from either GlcNAc or mannose by the soluble transferases were similar to those formed by the particulate enzyme. Thus the major product formed from UDP-[3H]GlcNAc was GlcNAc-pyrophosphoryldolichol with small amounts of the disaccharide-lipid while the product formed from GDP-[14C]mannose was mannosylphosphoryldolichol.  相似文献   

9.
The stepwise formation and characterization of linkage unit intermediates and their functions in ribitol teichoic acid biosynthesis were studied with membranes obtained from Staphylococcus aureus H and Bacillus subtilis W23. The formation of labeled polymer from CDP-[14C]ribitol and CDP-glycerol in each membrane system was markedly stimulated by the addition of N-acetylmannosaminyl(beta 1----4)N-acetylglucosamine (ManNAc-GlcNAc) linked to pyrophosphorylyisoprenol. Whereas incubation of S. aureus membranes with CDP-glycerol and ManNAc-[14C]GlcNAc-PP-prenol led to synthesis of (glycerol phosphate) 1-3-ManNAc-[14C]GlcNAc-PP-prenol, incubation of B. subtilis membranes with the same substrates yielded (glycerol phosphate)1-2-ManNAc-[14C]GlcNAc-PP-prenol. In S. aureus membranes, (glycerol phosphate)2-ManNAc-[14C]GlcNAc-PP-prenol as well as (glycerol phosphate)3-ManNAc-[14C]GlcNAc-PP-prenol served as an acceptor for ribitol phosphate units, but (glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol did not. In B. subtilis W23 membranes, (glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol served as a better acceptor for ribitol phosphate units than (glycerol phosphate)2-ManNAc-[14C]GlcNAc-PP-prenol. In this membrane system (ribitol phosphate)-(glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol was formed from ManNAc-[14C]GlcNAc-PP-prenol, CDP-glycerol and CDP-ribitol. The results indicate that (glycerol phosphate)1-3-ManNAc-GlcNAc-PP-prenol and (glycerol phosphate)1-2-ManNac-GlcNAc-PP-prenol are involved in the pathway for the synthesis of wall ribitol teichoic acids in S. aureus H and B. subtilis W23 respectively.  相似文献   

10.
Regulation of dolichyl phosphate-linked oligosaccharide assembly has been studied during the course of diethylstilbestrol-induced chick oviduct differentiation. Oviduct membranes from treated chicks form 4.6 times as much GlcNAc-P-P-Dol and GlcNAc2-P-P-Dol upon incubation with UDP-[14C]GlcNAc and MgCl2 than do membranes from untreated chicks. Assembly of oligosaccharide-lipid was studied by incubation of membranes with purified exogenous [14C]GlcNAc2-P-P-Dol and GDP-Man. Man transfer required a divalent cation (10 mM Mg2+) and detergent (0.5% Nonidet P-40 is optimal) and occurs in the presence of amphomycin (500 micrograms/ml). The apparent Km for GDP-Man is 1 microM and for [14C]GlcNAc2-P-P-Dol is 0.45 microM. The products are a series of sequentially formed dolichyl pyrophosphate-linked saccharides up to Man5GlcNAc2, the first of which is Man beta 1,4GlcNAc2. The same products are formed either in the presence or absence of amphomycin. Conversion of GlcNAc2-P-P-Dol to higher oligosaccharides is stimulated 3-fold by estrogen treatment of chicks. Similarly, the conversion of partially purified exogenously added Man beta-[14C]GlcNAc2-P-P-Dol is 4.6-fold higher after diethylstilbestrol treatment.  相似文献   

11.
A new membrane preparation from Saccharomyces cerevisiae was developed, which effectively catalyzes the synthesis of large oligosaccharide-lipids from GDP-Man and UDP-Glc allowing a detailed study of their formation and size. The oligosaccharide from an incubation with GDP-Man could be separated by gel filtration chromatography into several species consisting of two N-acetylglucosamine (GlcNAc) residues at the reducing end and differing by one mannos unit; the major compound formed has the composition (Man)9(GlcNAc)2. Upon incubation with UDP-Glc, three oligosaccharides corresponding to the size of (Glc)1-3(Man)9(GlcNAc)2 are formed. Thus, the oligosaccharides generated in vitro by the yeast membranes appear to be identical in size with the oligosaccharides found in animal systems. In addition the results indicate that dolichyl phosphate mannoe (DolP-Man) is the immediate donor in assembling the oligosaccharide moiety from (Man)5(GlcNAc)2 to (Man)9(GlcNAc)2. All three glucose residues are transferred from DolP-Glc. Experiments with isolated [Glc-14C]oligosaccharide-lipid as substrate demonstrated that the oligosaccharide chain is transferred to an endogenous membrane protein acceptor. Moreover, transfer is followed by an enzymic removal of glucose residues, due to a glucosidase activity associated with the membranes. Glucose release from the free [Glc-14C]oligosaccharide is less effective than from protein-bound oligosaccharide. Glycosylation was also observed using [Man-14C]oligosaccharide-lipid or DolPP-(GlcNAc)2 as donor. However, transfer in the presence of glucose seems to be more rapid. The mannose-containing oligosaccharide, released from the lipid, was shown to function as a substrate for further chain elongation reactions utilizing GDP-Man but not DolPP-Man as donor. It is suggested that the immediate precursor in the synthesis of the heterogeneous core region, (Man)12-17(GlcNAc)2, of yeast mannoproteins is a glucose-containing lipid-oligosaccharide with the composition (Glc)3(Man)9(GlcNAc)2, i.e. only part of what has been defined as inner core is built up on the lipid carrier. After transfer to protein the oligosaccharide is modified by excision of the glucose residues, followed subsequently by further elongation from GDP-Man to give the size of th oligosaccharide chains found in native mannoproteins.  相似文献   

12.
The N-acetylglucosaminyltransferases probably involved in the biosynthesis in vitro of Ii core glycosphingolipids have been solubilized from a membrane preparation of mouse lymphoma P-1798 and partially characterized. The detergent-extracted membrane supernatant contains both beta 1-3- and beta 1-6-N-acetylglucosaminyltransferase activities that transfer [3H]GlcNAc from UDP-[3H]GlcNAc to the terminal galactose of neolactotetraosylceramide (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-ceramide; nLcOse4ceramide), to form the Ii core structures. The linkage of [3H]N-acetylglucosamine incorporated into the terminal galactose of nLcOse4Cer was determined from identification of 2,4,6-tri-O-methyl[3H]galactose and 2,3,4-tri-O-methyl[3H]galactose after hydrolysis of the permethylated enzymatic products, GlcNAc beta-[3H]Gal-GlcNAc-Gal-Glc-ceramide. In addition to the presence of beta-N-acetylglucosaminyltransferases, we have detected a galactosyltransferase activity in this soluble supernatant fraction that catalyzes the transfer of [14C]galactose from UDP-[14C]galactose to lactotriaosylceramide (GlcNAc beta 1-3Gal beta 1-4Glc-ceramide; LcOse3ceramide) to form nLcOse4ceramide, the acceptor in the N-acetylglucosaminyltransferase-catalyzed reaction.  相似文献   

13.
Cell wall metabolism and cell wall modification are very important processes that bacteria use to adjust to various environmental conditions. One of the main modifications is deacetylation of peptidoglycan. The polysaccharide deacetylase homologue, Bacillus subtilis YjeA (renamed PdaC), was characterized and found to be a unique deacetylase. The pdaC deletion mutant was sensitive to lysozyme treatment, indicating that PdaC acts as a deacetylase. The purified recombinant and truncated PdaC from Escherichia coli deacetylated B. subtilis peptidoglycan and its polymer, (-GlcNAc-MurNAc[-L-Ala-D-Glu]-)(n). Surprisingly, RP-HPLC and ESI-MS/MS analyses showed that the enzyme deacetylates N-acetylmuramic acid (MurNAc) not GlcNAc from the polymer. Contrary to Streptococcus pneumoniae PgdA, which shows high amino acid sequence similarity with PdaC and is a zinc-dependent GlcNAc deacetylase toward peptidoglycan, there was less dependence on zinc ion for deacetylation of peptidoglycan by PdaC than other metal ions (Mn(2+), Mg(2+), Ca(2+)). The kinetic values of the activity toward B. subtilis peptidoglycan were K(m) = 4.8 mM and k(cat) = 0.32 s(-1). PdaC also deacetylated N-acetylglucosamine (GlcNAc) oligomers with a K(m) = 12.3 mM and k(cat) = 0.24 s(-1) toward GlcNAc(4). Therefore, PdaC has GlcNAc deacetylase activity toward GlcNAc oligomers and MurNAc deacetylase activity toward B. subtilis peptidoglycan.  相似文献   

14.
1. The enzymic synthesis of the wall polymer poly-(N-acetylglucosamine 1-phosphate) in Staphylococcus lactis N.C.T.C. 2102 was studied by using UDP-[acetyl-(14)C]N-acetylglucosamine and the corresponding nucleotide containing (32)P. 2. Labelled material was extracted from the particulate enzyme preparation with butan-1-ol. Pulse-labelling experiments indicated that this material contained an intermediate in the biosynthesis. 3. The lipid intermediate was partially purified, and chemical and enzymic degradation showed that it was composed of N-acetylglucosamine 1-pyrophosphate in labile ester linkage to an organic-soluble alcohol, possibly a polyisoprenoid alcohol. The methanolysis of sugar 1-pyrophosphate derivatives, including nucleoside diphosphate sugars, is discussed in relation to degradation products obtained from the lipid. 4. The lipids from the particulate enzyme preparation probably contained another compound in which N-acetylglucosamine 1-phosphate is attached to an organic-soluble alcohol; this may participate in the biosynthesis of another polysaccharide. 5. The function of the lipid intermediate in polymer biosynthesis is discussed.  相似文献   

15.
The inhibition of growth and cell wall synthesis by 3-amino-3-deoxy-D-glucose (3-AG), which is known to be one of the constituents of the kanamycin molecule and a metabolite of Bacillus sp., was almost completely overcome by glucosamine and N-acetylglucosamine in Staphylococcus aureus but scarcely affected by D-glucose and D-fructose. The antibiotic did not inhibit the incorporation of [14C]glucosamine and [3H]N-acetylglucosamine into the acid-insoluble fraction, but rather enhanced the incorporation of [14C]glucosamine. On the other hand, it inhibited the incorporation of D-[14C]fructose into the cell wall fraction but hardly affected the incorporation of D-[14C]fructose into the acid-insoluble fraction in the presence of pencillin G. Based on these results, it is suggested that the site of primary action of 3-AG is the formation of glucosamine-6-phosphate from D-fructose-6-phosphate, which is catalyzed by glucosamine synthetase [EC 2.6.1.16].  相似文献   

16.
The assay of fibroblast and leukocyte-N-acetylglucosaminylphosphotransferase with alpha-methylmannoside acceptor and commercially available UDP-[3H or 14C]N-acetylglucosamine donor was modified to yield low background and consequently high sensitivity and reliability comparable to those obtained with the synthetically made [beta-32P]UDP-N-acetylglucosamine donor. This was achieved by an additional elution step that removed free [3H or 14C]N-acetylglucosamine which appeared to be the breakdown product responsible for the high background. In addition, the [3H or 14C]N-acetylglucosamine-1-phospho-6-alpha-methylmannoside product of the transfer reaction was then isolated and, following desalting, could serve as a substrate for the assay of alpha-N-acetylglucosaminyl phosphodiesterase. Cell preparations of patients with I-cell disease and pseudo-Hurler polydystrophy demonstrated severe to moderate deficiency of transferase activity and normal phosphodiesterase activity toward the respective substrates labeled with 3H or 14C in the glucosamine moiety.  相似文献   

17.
Formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 was detected in rat liver slices and Phaseolus vulgaris seeds incubated with [U-14C]glucose. Similar compounds were not synthesized in Saccharomyces cerevisiae cells incubated under similar conditions. Rat liver microsomes were incubated with [glucose-U-14C] Glc3Man9GlcNAc2-P-P-dolichol or UDP-[U-14C]Glc as glycosyl donors. Only in the latter condition protein-linked Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed. Addition of mannooligosaccharides that strongly inhibited alpha 1-2-mannosidases to incubation mixtures containing rat liver microsomes and UDP-[U-14C]Glc did not prevent formation of protein-bound Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 . Furthermore, the presence of amphomycin in reaction mixtures containing liver membranes and UDP-[U-14C]Glc completely abolished synthesis of glucosylated derivatives of dolichol without affecting formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 . The results reported above indicated that under the experimental conditions employed protein-bound Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 were formed by glucosylation of unglucosylated oligosaccharides. Results obtained in pulse-chase experiments performed in vitro also supported this conclusion. UDP-Glc appeared to be the donor of the glucosyl residues. The rough endoplasmic reticulum was found to be the main subcellular site of protein glucosylation. It is tentatively suggested that this process could prevent extensive degradation of oligosaccharides by mannosidases during transit of glycoproteins through the endoplasmic reticulum.  相似文献   

18.
The lipid-linked oligosaccharide synthesized in vitro, in the presence of 1.0 microM UDP-[3H]Glc, GDP-[14C]Man, and UDP-GlcNAc has been isolated and the structure of the oligosaccharide has been analyzed. The oligosaccharide contains 2 N-acetylglucosamine, 9 mannose, and 3 glucose residues. The N-acetylglucosamine residues are located at the reducing terminus. The 3 glucose residues are arranged in a linear order at one of the nonreducing termini in the sequence Glc 1,2--Glc 1,3--Glc--(Man)9 (GlcNAc)2. The structural analysis was made possible largely by the availability of glucosidase preparations of fungal anad microsomal origin which remove glucose residues from the oligosaccharide without releasing mannose residues.  相似文献   

19.
The mosquitocidal glycoprotein endotoxin of Bacillus thuringiensis subsp. israelensis was digested with chymotrypsin to yield protease-resistant domains which were then separated from smaller protease digestion products by high-performance liquid chromatography. Once purified, the domains no longer bound wheat germ agglutinin, a lectin which binds N-acetylglucosamine (GlcNAc) and GlcNAc oligomers. Purified protease-resistant domains were as toxic for Culex quinquefasciatus larvae as intact solubilized toxin. In separate experiments, the toxicity of chymotrypsin-digested endotoxin for Aedes aegypti larvae was reduced fivefold or more. A model is presented in which GlcNAc-containing oligosaccharides are required for toxicity for A. aegypti larvae but not C. quinquefasciatus larvae.  相似文献   

20.
BcChi-A, a GH19 chitinase from the moss Bryum coronatum, is an endo-acting enzyme that hydrolyses the glycosidic bonds of chitin, (GlcNAc)(n) [a β-1,4-linked polysaccharide of GlcNAc (N-acetylglucosamine) with a polymerization degree of n], through an inverting mechanism. When the wild-type enzyme was incubated with α-(GlcNAc)2-F [α-(GlcNAc)(2) fluoride] in the absence or presence of (GlcNAc)(2), (GlcNAc)(2) and hydrogen fluoride were found to be produced through the Hehre resynthesis-hydrolysis mechanism. To convert BcChi-A into a glycosynthase, we employed the strategy reported by Honda et al. [(2006) J. Biol. Chem. 281, 1426-1431; (2008) Glycobiology 18, 325-330] of mutating Ser(102), which holds a nucleophilic water molecule, and Glu(70), which acts as a catalytic base, producing S102A, S102C, S102D, S102G, S102H, S102T, E70G and E70Q. In all of the mutated enzymes, except S102T, hydrolytic activity towards (GlcNAc)(6) was not detected under the conditions we used. Among the inactive BcChi-A mutants, S102A, S102C, S102G and E70G were found to successfully synthesize (GlcNAc)(4) as a major product from α-(GlcNAc)(2)-F in the presence of (GlcNAc)(2). The S102A mutant showed the greatest glycosynthase activity owing to its enhanced F(-) releasing activity and its suppressed hydrolytic activity. This is the first report on a glycosynthase that employs amino sugar fluoride as a donor substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号