首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A quantum theoretic approach to the problem of specific biological interactions at the molecular level, is presented. The concept of a “measuring system” in analogy with the enzyme macromolecule is used. The main hypothesis is that in the course of an enzymic reaction, the enzyme will specify the eigenvalues of the observables associated with the substrate, on some particular quantum states. Then, any “perturbation” induced in the substrate, will also be specified by the enzyme. In this context, the enzymic substrate is “perturbed” by an electromagnetic field and the physical transition S → S1 thus induced is “measured” in the E(S) + S1 enzyme reaction, as compared with the control E(S) + S reaction. The effect on the enzyme reaction is manifested by an enhancement of the reaction rate appearing periodically at well defined substrate irradiation times. The minimum substrate irradiation time inducing the first effect, termed tm and the fixed time period that always appears to delimit two successive rate effects, termed the τ-parameter, are enzyme dependent. The same idea was used to devise an experimental model for the study of some more general interactions, within cellular systems. The growth of auxotrophic micro-organisms in minimal media supplemented with irradiated growth factors was followed. The pattern of growth stimulations obtained with this model, displays a similarity with the periodic enhancements of enzymic rates, obtained with irradiated substrates. This new type of evidence may suggest a characteristic of biological specificity, previously unrecognized.  相似文献   

2.
3.
It is difficult to control concentrations of methanol/dissolved oxygen at high levels simultaneously in heterologous proteins productions by Pichia pastoris during induction phase. Two strains, a methanol utilization slow (MutS) type and a plus (Mut+) type were used with methanol/sorbitol co-feeding strategy to induce porcine interferon-α and human serum albumin-human granulocyte colony stimulating factor respectively, under the conditions of “methanol sufficient-oxygen limited (MS-OL)” and “methanol limited-oxygen sufficient (ML-OS)”. For the MutS/Mut+ strains, the target proteins titers under “MS-OL” were 6-fold/19.2% of those under “ML-OS”. The key genes in methanol metabolism of the MutS strain were up-regulated under “MS-OL”, but they were not differently expressed in the Mut+ strain. Methanol utilization rate (rMeOH) of the MutS strain reduced when decreasing methanol concentration, but rMeOH of the Mut+ strain unchanged unless methanol concentration decreased to a low-limit of 0.6 g/L. Finally, kinetic models were designed to describe the methanol/sorbitol co-feeding process.  相似文献   

4.
ERRATUM: Wright LE and Schwarcz HP (1998) Stable Carbon and Oxygen Isotopes in Human Tooth Enamel: Identifying Breastfeeding and Weaning in Prehistory. Am. J. Phys. Anthropol. 106: 1–18. Isotopic ratios were incorrectly printed as percentages (%) rather than units permil (‰). Wherever “breast feeding” and “breast fed” occur, the words should be combined into “breastfeeding” and “breastfed” respectively. The correct information on isotopic ratios is the following: p. 1, Abstract: all % signs should be “‰”; p. 2, column two, last line: “… δ13C values1, have been …”; p. 2, Footnote 1 should read: “Isotope ratios of carbon and oxygen are expressed in δ notation as follows, δ = [(Rsample/Rstandard) − 1] × 1000, where R = 13C/12C for δ13C, and R = 18O/16O for δ18O, and are in units permil, ‰.”; p. 3, column two: all % signs should be “‰”, except for the 23rd line from the bottom, which reads: “… provided 95% of water intake by all infants …”; p. 5: all % signs should be “‰”; p. 6, column one: 8th and 9th line from bottom should be “… mean deviations were 0.029‰ for δ13C and 0.024‰ for δ18O …”; p. 6, column one: 2nd line from bottom should be “… only 0.208‰ for δ13C and only 0.091‰ for δ18O …”; p. 6, column two: top line: “… of 0.5‰ in δ13C and 0.2‰ in δ18O …”; p. 8, 9 and 10: all % signs should be “‰”; p. 11, column two: 7th line from top: “… the lipids are 4-6‰ lighter …”; p. 12, 13 and 14: all % signs should be “‰.”  相似文献   

5.
We derive some new results for diffusion models in population genetics of the “infinite-alleles” type. Assuming present allelic frequencies known, we find expected values for times which may be interpreted either as the age of the kth oldest allele or the time to extinction of the “kth-to-last” allele to be lost. We also find some conditional expectations and probabilities related to the order of extinction or creation of the alleles. Computations illustrate the dependence of the expected times on the mutation rate.  相似文献   

6.
The inactivation kinetics of glucoso-6-phosphate dehydrogenase (GPDH) and its complexes with glucoso-6-phosphate and NADP+ was characterized in aqueous solutions at 36–47°C under treatment with low frequency (27 kHz, 60 W/cm2) and high frequency ultrasound (880 kHz, 1 W/cm2). To this end, we measured three effective first-order inactivation rate constants: thermal k in * , total (thermal and ultrasonic) k in, and ultrasonic k in(US). The values of the constants were found to be higher for the free enzyme than for its complexes GPDH-GP and GPDH-NADP+ at all temperatures, which confirms the enzyme stabilization by its substrate and cofactor under both thermal and ultrasonic inactivation. Effective values of the activation energies (E a) were determined and the preexponential factors of the rate constants and thermodynamic activation parameters of inactivation processes (ΔH*, ΔS*, and ΔG*) were calculated from the temperature dependences of the inactivation rate constants of GPDH and its complexes. The sonication of aqueous solutions of free GPDH and its complexes was accompanied by a reduction of E a and ΔH* values in comparison with the corresponding values for thermal inactivation. The E a, ΔH*, and ΔS* inactivation values for GPDH are lower than the corresponding values for its complexes. A linear dependence between the growth of the ΔH* and ΔS* values was observed for all the inactivation processes for free GPDH and its complexes.  相似文献   

7.
We have undertaken a study of the mechanism of bovine liver glutamate dehydrogenase self-association with scattered light temperature-jump and stopped-flow relaxation techniques. Our results indicate a “random association” mechanism in which association-dissociation reactions occur between all polymerized forms of the oligomer according to
where the specific rate-constants ka and kd are independent of chain length. At 15 °C we find ka = 1.5 × 106m−1s−1 and kd = 5 s−1. Standard thermodynamic functions and activation parameters have been determined from equilibrium and kinetic experiments at different temperatures. Large entropy effects and heat capacities indicate water participation in the self-aggregation process. We suggest that the rate-determining step in the association of glutamate dehydrogenase molecules is the “melting” of a layer of ordered water structure between two hydrophobic contact sites.  相似文献   

8.
TheH?2I k region encodes at least two different target antigens for unrestricted T-cell mediated killing. The first is controlled by theI?A region alone and the second depends on a pair of alleles, one located to the left ofI?B (presumably inI?A) and the other to the right ofI?J (presumably inI?E). Hence, effector cells nominally specific for a product of theI?E region do not kill target cells with the sameI?E region as the stimulator unless theI?A region is also shared. Some effectors specific forH?2I k , such as A.TH anti-A.TL and B10.A(4R) anti-B10.A(2R), cross-react with B10.A(3R) and B10.A(5R) target cells. A product of theH?2 b haplotype was shown to complement products of theH?2 d orH?2 k haplotypes in forming this cross-reactive determinant. The results are consistent with recent biochemical data on the component chains of Ia antigens.  相似文献   

9.
The sesquiterpene lactone, 2-methyl-2-butenoic acid dodecahydro-4-(hydroxymethyl)-10a-methyl-8-methylene-3,7-dioxooxineno[5,6]cyclodeca[1,2-b]furan-9-yl ester [1aR*-[1aS*,4R*,5aS*,8aR*,9R*(E)]], argophyllone-B, was isolated from acetone extracts from the leaves of Helianthus argophyllus. Its structure has been determined by single crystal X-ray analysis. Complete 1H NMR and 13C NMR assignments have been made.  相似文献   

10.
The objective of this study was to characterize the leaf rust resistance locusLr1 in wheat. Restriction fragment length polymorphism (RELP) analysis was performed on the resistant lineLr1/6*Thatcher and the susceptible varieties Thatcher and Frisal, as well as on the segregating F2 populations. Seventeen out of 37 RFLP probes mapping to group 5 chromosomes showed polymorphism betweenLr1/6*Thatcher and Frisal, whereas 11 probes were polymorphic between the near-isogenic lines (NILs)Lr1/6*Thatcher and Thatcher. Three of these probes were linked to the resistance gene in the segregating F2 populations. One probe (pTAG621) showed very tight linkage toLr1 and mapped to a single-copy region on chromosome 5D. The map location of pTAG621 at the end of the long arm of chromosome 5D was confirmed by the absence of the band in the nulli-tetrasomic line N5DT5B of Chinese Spring and a set of deletion lines of Chinese Spring lacking the distal part of 5DL. Twenty-seven breeding lines containing theLr1 resistance gene in different genetic backgrounds showed the same band asLr1/6*Thatcher when hybridized with pTAG621. The RFLP marker was converted to a sequence-tagged-site marker using polymerase chain reaction (PCR) amplification. Sequencing of the specific fragment amplified from both NILs revealed point mutations as well as small insertion/deletion events. These were used to design primers that allowed amplification of a specific product only from the resistant lineLr1/6*Thatcher. This STS, specific for theLr1 resistance gene, will allow efficient selection for the disease resistance gene in wheat breeding programmes. In addition, the identification of a D-genome-specific probe tightly linked toLr1 should ultimately provide the basis for positional cloning of the gene.  相似文献   

11.
Effect of heavy-ion beam irradiation on the growth and development of embryogenic calluses was examined in the liliaceous monocotyledon Tricyrtis hirta and the umbelliferous dicotyledon Daucus carota. Embryogenic calluses of T. hirta were irradiated with 5, 10, 20 or 50 Gy of 12C6+, 14N7+ or 20Ne10+ ions, and those of D. carota were irradiated with 5, 10, 20 or 50 Gy of 14N7+ ions. In both species, irradiation at 10–50 Gy inhibited growth of embryogenic calluses, and callus growth rate decreased as irradiation dose increased. Interestingly irradiation at low doses greatly promoted somatic embryo production from embryogenic calluses in both species. In T. hirta, calluses irradiated with 5 and 10 Gy 12C6+ ions, 10 Gy 14N7+ ions, and 5 Gy 20Ne10+ ions produced more than twice as many embryos as the control, non-irradiated calluses. In D. carota, embryogenic calluses irradiated with 5 Gy 14N7+ ions produced more than one and a half times as many embryos as the control. Somatic embryo production in both species was inhibited by irradiation at 20 and 50 Gy.  相似文献   

12.
Non-glucosylated, non-methylated phage T2 DNA was methylated in vitro with partially purified wild-type (dam+) or mutant (damh) T2 DNA adenine methylase. The radioactively labeled methyladenine-containing DNA was enzymatically degraded and the resulting oligonucleotides were separated according to chain length by DEAE-cellulose chromatography. Following “fingerprinting” by two-dimensional electrophoresis, we determined the sequence for various di-, tri- and tetranucleotides containing radioactive N6-methyldeoxyadenosine. From this analysis we conclude that both T2 dam+ and T2 damh contain the sequence 5′…G-mA -Py…3′.  相似文献   

13.
Previous proton nuclear magnetic resonance (nmr) studies have indicated that inositol hexaphosphate (IHP) can stabilize hemoglobin (Hb) Kansas in a deoxy-like quaternary structure even when fully liganded with carbon monoxide (CO) (S. Ogawa, A. Mayer, and R. G. Shulman, 1972, Biochem. Biophys. Res. Commun., 49, 1485–1491). In the present report we have investigated both CO binding at equilibrium and the CO binding and release kinetics to determine if Hb Kansas + IHP is devoid of cooperativity, as would be suggested by the nmr studies just quoted. The equilibrium measurements show that Hb Kansas + IHP has a very low affinity for CO (P12 = 1.2 mm Hg and Keq = 5.4 × 105M?1) and almost no cooperativity (n = 1.1) at pH 7, 25 °C. The CO “on” and “off” kinetics also show no evidence for cooperativity. In addition, the equilibrium constant estimated from the kinetic rate constants (Keq = 5.2 × 105M?1 with kon = 1.03 × 105M?1 · S? and koff = 0.198 S?1) is in excellent agreement with the equilibrium constant determined directly. Thus, both kinetic and equilibrium measurements allow us to conclude that CO binding to Hb Kansas + IHP occurs without significant cooperativity.  相似文献   

14.
The binding of methyl isonitrile (CH3Nandz.tbnd;C) to hemoglobin β chains has been studied by measuring the 1H nuclear magnetic resonance transverse relaxation times for methyl isonitrile as a function of protein concentration, temperature and 14N decoupling. Binding of methyl isonitrile both at the heme iron and at a non-specific site (or sites) has an effect upon the measured nuclear spin relaxation times. The results yield a value of 57 ± 12 seconds?1 (20 °C) for the “off” rate constant K?1 for specific binding and an Arrhenius activation energy for k?1 of 14 ± 3 kcal mol?1.  相似文献   

15.
Mechanistic and structural aspects of photosynthetic water oxidation   总被引:10,自引:0,他引:10  
Conclusions on the functional and structural organisation of photosynthetic water oxidation are gathered from a critical survey of the wealth of data reported in the literature and author's own experimental research: (1) the water oxidising complex (WOC) contains a tetranuclear manganese cluster of dimer of dimers' structure and functional heterogeneity of the metal centers, (2) the four step univalent oxidative pathway leading to water oxidation into molecular oxygen and four protons comprises only manganese, tyrosine YZ of polypeptide Dl and the substrate as redox active species, (3) the redox transitions S0→ S1 and S1→ S2 are manganese centered whereas S2→ S3 is most likely a ligand-centered reaction, (4) there exist several lines of evidence for a marked structural change that accompanies the redox transition S2→ S3, (5) one Ca2+ is an indispensible constituent of a functionally competent WOC while the role of Cl is much less clear and a direct participation disputable, (6) substrate water is most likely bound in all redox states S0,…,S3 and exchangeable with the bulk phase. The protonation state is determined by the redox state S1 and the protein microenvironment. A mechanism is proposed for water oxidation in the WOC that is based on three key postulates: (1) water oxidation takes place in the first coordination sphere of one manganese dimer [MnaMnb]; (2) the essential O-O bond is preformed in S3 as part of a rapid redox isomerism S3(I)→S3(II) where in S3(II) a nuclear geometry and electronic configuration is attained that corresponds to a peroxidic-type species; and (3) S3(II) is an ‘entatic state’ for the formation of complexed dioxygen triggered by YZOX induced electron abstraction from the WOC and electronic redistribution to S0(O2).  相似文献   

16.
DNA isolated from liver of healthy and tumor-bearing (sarcoma 45) rats was irradiated in water-salt solution with weak microwaves (64.5 GHz, 50 μW/cm2). The heat stability of DNA increased with irradiation time (a raise of 1.5°C in T m for “tumor” DNA after 90 min, without changes in ΔT), which may be associated with dehydration of the surrounding Na+ ions.  相似文献   

17.
The binding affinity of the two substrate–water molecules to the water-oxidizing Mn4CaO5 catalyst in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae was studied in the S2 and S3 states by the exchange of bound 16O-substrate against 18O-labeled water. The rate of this exchange was detected via the membrane-inlet mass spectrometric analysis of flash-induced oxygen evolution. For both redox states a fast and slow phase of water-exchange was resolved at the mixed labeled m/z 34 mass peak: kf = 52 ± 8 s− 1 and ks = 1.9 ± 0.3 s− 1 in the S2 state, and kf = 42 ± 2 s− 1 and kslow = 1.2 ± 0.3 s− 1 in S3, respectively. Overall these exchange rates are similar to those observed previously with preparations of other organisms. The most remarkable finding is a significantly slower exchange at the fast substrate–water site in the S2 state, which confirms beyond doubt that both substrate–water molecules are already bound in the S2 state. This leads to a very small change of the affinity for both the fast and the slowly exchanging substrates during the S2 → S3 transition. Implications for recent models for water-oxidation are briefly discussed.  相似文献   

18.
To elucidate potential toxic properties of S-adenosylhomocysteine and 5′-methylthioadenosine, we have examined the inhibitory properties of these compounds upon enzymes involved with adenosine metabolism. S-Adenosylhomocysteine, but not S-adenosylmethionine, was a noncompetitive inhibitor of adenosine kinase with Ki values ranging from 100 to 400 μm. Methylthioadenosine competitively inhibited adenosine kinase with variable adenosine below 1 μm with a Ki of 120 μm, increased adenosine kinase activity when the adenosine concentration exceeded 2 μm, and did not appear to be a substrate for adenosine kinase. Methylthioadenosine inactivated S-adenosylhomocysteine hydrolase from erythrocytes, B-lymphoblasts, and T-lymphoblasts with Ki values ranging from 65 to 117 μm and “k2” from 0.30 to 0.55 min?1. Adenosine deaminase was not inhibited by 5′-methylthioadenosine up to 1000 μm. To clarify how 5′-methylthioadenosine might accumulate, 5′-methylthioadenosine phosphorylase was evaluated. This enzyme was not blocked by up to 500 μm adenosine, deoxyadenosine, S-adenosylhomocysteine, or S-adenosylmethionine and was not decreased in erythrocytes from patients with adenosine deaminase deficiency, purine nucleoside phosphorylase deficiency, or hypogammaglobulinemia. These observations suggest that the inhibitory properties of 5′-methylthioadenosine upon adenosine kinase and S-adenosylhomocysteine hydrolase may contribute to the toxicity of the exogenously added compound. The toxicity resulting from S-adenosylhomocysteine accumulation intracellularly may be related to adenosine kinase inhibition in addition to disruption of transmethylation reactions.  相似文献   

19.
Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, “blue” form with an S2 (11B u + ) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, “red” form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (11B u + ) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (11B u + ) → Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (11B u + ) → S0 (11A g ? ) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid–protein interactions, including the inferred hydrogen bonding.  相似文献   

20.
The pre-steady states of Pseudomonas species lipase inhibitions by p-nitrophenyl-N-substituted carbamates (1–6) are composed of two steps: (1) formation of the non-covalent enzyme–inhibitor complex (E:I) from the inhibitor and the enzyme and (2) formation of the tetrahedral enzyme–inhibitor adduct (E–I) from the E:I complex. From a stopped-flow apparatus, the dissociation constant for the E:I complex, KS, and the rate constant for formation of the tetrahedral E–I adduct from the E:I complex, k2 are obtained from the non-linear least-squares of curve fittings of first-order rate constant (kobs) versus inhibition concentration ([I]) plot against kobs=k2+k2[I]/(KS+[I]). Values of pKS, and log k2 are linearly correlated with the σ* values with the ρ* values of −2.0 and 0.36, respectively. Therefore, the E:I complexes are more positive charges than the inhibitors due to the ρ* value of −2.0. The tetrahedral E–I adducts on the other hand are more negative charges than the E:I complexes due to the ρ* value of 0.36. Formation of the E:I complex from the inhibitor and the enzyme are further divided into two steps: (1) the pre-equilibrium protonation of the inhibitor and (2) formation of the E:I complex from the protonated inhibitor and the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号