首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Antiandrogens inhibit the ligand-induced transactivation by the androgen receptor (AR) and have a widespread use in the treatment of prostate cancer but their mode of action is not fully understood. Here we show that the ability of the antiandrogen cyproterone acetate (CPA) to inhibit transactivation by the human AR (hAR) involves the corepressor SMRT (silencing mediator for retinoic acid and thyroid hormone receptor). We detect binding of SMRT to hAR when treating with the antiandrogen CPA, but not with the antihormones casodex or hydroxyflutamide. Interestingly, we find that SMRT binds to the N terminus of the hAR. Thereby, SMRT modulates the activity of hAR in receptor-negative CV1 cells. In addition, we have used receptor point mutants that exhibit normal transactivation potential and unchanged partial agonistic activity when treated with CPA, but lack both SMRT binding and SMRT-mediated inhibition of CPA-bound AR. This indicates that mechanisms involved in hAR-mediated transactivation are distinct from antihormone-induced receptor inactivation. Furthermore, we show that treatment of transfected cells with a cAMP analog or coexpression of the catalytic subunit of PKA, known to activate hAR, inhibits the binding of SMRT to the AR. This suggests that the association of SMRT with hAR is regulated at the level of cross-talk mechanisms and that ligand-independent receptor activation is due to corepressor dissociation. Taken together, we provide novel insights in AR regulation, antihormone action, and functional nuclear receptor-corepressor interaction.  相似文献   

6.
Androgen receptor (AR) that mediates androgen action is a crucial factor in male reproductive functions. Here, we report a novel AR corepressor ARR19 (androgen receptor corepressor-19 kDa), which has been isolated as a putative androgen-induced gene from murine testis. ARR19 encoding a leucine-rich protein is expressed only in male reproductive organs such as testis and prostate. ARR19 expression in the testis is developmentally regulated. Functional analysis conducted by the transient transfection of mammalian cells shows that ARR19 represses AR transactivation in a dose-dependent manner. Furthermore, yeast two-hybrid and glutathione S-transferase pull-down analyses reveal that ARR19 directly associates with AR through the N-terminal and leucine zipper-containing regions of ARR19 and the DNA binding-hinge domain of AR. Interestingly, ARR19 localized in the cytoplasmic compartment cotranslocates into the nucleus with AR upon androgen exposure. The ARR19 repression of AR transactivation is through the recruitment of histone deacetylase 4 (HDAC4) by ARR19. Overexpression of HDAC4 further inhibits the ARR19-repressed AR transactivation. In addition, ARR19 directly interacts with HDAC4 in vitro. Furthermore, DNA-protein complex immunoprecipitation assays reveal that HDAC4 is recruited to an androgen-regulated promoter through ARR19. Taken together, the results suggest that ARR19 may act as an AR corepressor in vivo and play an important role in male reproductive functions.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Prostate-specific antigen (PSA) is highly overexpressed in prostate cancer. One important regulator of PSA expression is the androgen receptor (AR), the nuclear receptor that mediates the biological actions of androgens. AR is able to up-regulate PSA expression by directly binding and activating the promoter of this gene. We provide evidence here that that this AR activity is repressed by the tumor suppressor protein p53. p53 appears to exert its inhibition of human AR (hAR) by disrupting its amino- to carboxyl-terminal (N-to-C) interaction, which is thought to be responsible for the homodimerization of this receptor. Consistent with this, p53 is also able to block hAR DNA binding in vitro. Our previous data have shown that c-Jun can mediate hAR transactivation, and this appears to result from a positive effect on hAR N-to-C interaction and DNA binding. Interestingly, c-Jun is able to relieve the negative effects of p53 on hAR transactivation, N-to-C interaction, and DNA binding, demonstrating antagonistic activities of these two proteins. Importantly, a p53 mutation found in metastatic prostate cancer severely disrupts the p53 negative activity on hAR, suggesting that the inability of p53 mutants to down-regulate hAR is, in part, responsible for the metastatic phenotype.  相似文献   

17.
APPL may function as an adapter protein to modulate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Although we have previously proven that the PI3K/Akt pathway can suppress androgen receptor (AR) transactivation, the potential linkage from APPL to the AR remains unclear. Here we demonstrated that APPL could suppress AR-mediated transactivation in a dose-dependent manner in LNCaP and PC-3 cells. This suppressive effect could be blocked by either dominant-negative Akt or dominant-negative PI3K or LY294002, suggesting that the APPL-mediated suppression of AR transactivation is dependent on the PI3K/Akt pathway. We also observed that APPL could further enhance the Akt-mediated suppression of AR transactivation and AR target gene using the reporter gene and Northern blot assay. APPL was able to enhance insulin-like growth factor (IGF-1)-mediated Akt activation. The abrogation of IGF-1-mediated Akt activation by the dominant-negative PI3K or LY294002 or antisense APPL suggests that APPL may function as an important adapter protein in controlling the IGF-1 --> Akt signal pathway. Co-immunoprecipitation and glutathione S-transferase pull-down assays suggest that APPL, Akt, and AR may exist in a complex and Akt may serve as an important bridge factor for the association of APPL with AR. Together, our data indicate that APPL may suppress AR transactivation via potentiating Akt activity.  相似文献   

18.
The underlying mechanism of failed androgen ablation therapy is unknown. It is recognised that under therapeutic conditions the androgen receptor (AR) remains functionally active independent of hormone stimulation and may function through an alternative pathway. We report a novel cooperative interaction between CRKL (an intracellular signalling adaptor protein) and the AR. We demonstrate by biochemical and genetic approaches that CRKL is associated with the AR complex and is localised in the nucleus of prostate cancer cells and patient tissue biopsies. The interaction between CRKL and the AR is functionally relevant as demonstrated by its presence on the enhancer region of an androgen regulated gene (human Kallikrein-2), its upregulation of PSA, and reduction in AR transactivation following its disruption by siRNA knockdown. In the presence of the AR inhibitor casodex, the expression of CRKL co-stimulated by growth factors is able to rescue AR activity independent of hormone. Our data provides insight on how a non-nuclear factor such as CRKL may interact with the AR complex to bypass hormone dependency by using an alternative growth factor signalling pathway in advanced prostate cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号