首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many temperate green macroalgae contain secondary meatbolites that provide protection from grazing by some herbivores. These include the production of dopamine hydrochloride by the ulvoid green alga Ulvaria obscura and the production of dimethylsulfoniopropionate (DMSP) by many species of Ulvales and Caulerpales. The dopamine hydrochloride defense was isolated using bioassay-guided fractionation and is effective against sea urchins ( Strongylocentrotus droebachiensis ) and littorinid snails ( Littorina sitkana ). The DMSP activated defense system involves enzymatic cleavage of DMSP into dimethyl sulfide (DMS) and acrylic acid. It is found in many of the Ulvales and several species of Codium in the northeastern Pacific and Australasian regions. Many green algae such as Ulva fenestrata and Enteromorpha linza are avoided by urchins, which are deterred by DMS and acrylic acid in laboratory assays. However, these algae are often preferred foods of snails, which are deterred by DMS and acrylic acid. Snails may preferentially consume ulvoid green algae, despite being deterred by DMS and acrylic acid, because these algae contain relatively high nitrogen concentrations.  相似文献   

2.
For organisms living in the intertidal zone, temperature is an important selective agent that can shape species distributions and drive phenotypic variation among populations. Littorinid snails, which occupy the upper limits of rocky shores and estuaries worldwide, often experience extreme high temperatures and prolonged aerial emersion during low tides, yet their robust physiology--coupled with morphological and behavioral traits--permits these gastropods to persist and exert strong grazing control over algal communities. We use a mechanistic heat-budget model to compare the effects of behavioral and morphological traits on the body temperatures of five species of littorinid snails under natural weather conditions. Model predictions and field experiments indicate that, for all five species, the relative contribution of shell color or sculpturing to temperature regulation is small, on the order of 0.2-2 °C, while behavioral choices such as removing the foot from the substratum or reorienting the shell can lower body temperatures by 2-4 °C on average. Temperatures in central California rarely exceeded the thermal tolerance limits of the local littorinid species during the study period, but at sites where snails are regularly exposed to extreme high temperatures, the functional significance of the tested traits may be important. The mechanistic approach used here provides the ability to gauge the importance of behavioral and morphological traits for controlling body temperature as species approach their physiological thresholds.  相似文献   

3.
Jana Moelzner  Patrick Fink 《Oikos》2015,124(12):1603-1608
Chemical information transfer is a major agent in the regulation of interspecific and intraspecific interactions in natural ecosystems. One important group of such infochemicals both in terrestrial and aquatic ecosystems are so‐called volatile organic compounds (VOCs) that can evoke behavioral or physiological responses like predator avoidance and mate or host location. In previous work, we have demonstrated that freshwater gastropods utilize VOCs released from benthic algae as food finding cues, although the specific nature of the VOC release and perception were not yet clear. Therefore we tested whether gastropod grazing on biofilms leads to algal cell damage and a subsequent liberation of wounding‐associated VOCs. In bioassays we investigated the algal VOC bouquet level which is necessary to elicit a behavioural response of freshwater gastropods. The results of the liberation experiment showed that gastropod grazing leads to VOCs release. We also found that a certain threshold level of volatiles is necessary for snails to recognise the volatile infochemicals and subsequently respond with a directed foraging behaviour towards the odour. Finally, a calculated mass balance model demonstrated that the grazer mediated VOC release produced a signal concentration that is sufficient to be recognized by conspecifics and utilized as foraging infochemicals. The emission of ecologically relevant volatiles through snail grazing with subsequent attraction of other gastropod grazers to algal biofilms indicates an important but so far understudied chemical signaling mechanism of ecological importance.  相似文献   

4.
Many temperate green macroalgae contain secondary meatbolites that provide protection from grazing by some herbivores. These include the production of dopamine hydrochloride by the ulvoid green alga Ulvaria obscura and the production of dimethylsulfoniopropionate (DMSP) by many species of Ulvales and Caulerpales. The dopamine hydrochloride defense was isolated using bioassay‐guided fractionation and is effective against sea urchins (Strongylocentrotus droebachiensis) and littorinid snails (Littorina sitkana). The DMSP activated defense system involves enzymatic cleavage of DMSP into dimethyl sulfide (DMS) and acrylic acid. It is found in many of the Ulvales and several species of Codium in the northeastern Pacific and Australasian regions. Many green algae such as Ulva fenestrata and Enteromorpha linza are avoided by urchins, which are deterred by DMS and acrylic acid in laboratory assays. However, these algae are often preferred foods of snails, which are deterred by DMS and acrylic acid. Snails may preferentially consume ulvoid green algae, despite being deterred by DMS and acrylic acid, because these algae contain relatively high nitrogen concentrations.  相似文献   

5.
When attacked by herbivores, land plants can produce a variety of volatile compounds that attract carnivorous mutualists. Plants and carnivores can benefit from this symbiotic relationship, because the induced defensive interaction increases foraging success of the carnivores, while reducing the grazing pressure exerted by the herbivores on the plants. Here, we examine whether aquatic phytoplankton use volatile chemical cues in analogous tritrophic interactions. Marine algae produce several classes of biogenic gases such as non‐methane hydrocarbons, organohalogens, ammonia and methylamines, and dimethylsulfide. The grazing‐induced release of marine biogenic volatiles is poorly understood, however, and its effect on the chemical ecology of plankton and the foraging behavior of predators is essentially unknown. We outline grazing‐induced defenses in algae and highlight the biogenic production of volatiles when phytoplankton are attacked by herbivores. The role of chemical signaling in marine ecology presents several possible avenues for future research, and we believe that progress in this area will result in better understanding of species competition, bloom development, and the structuring of food webs in the sea. This has further implications for biogeochemical cycles, because several key compounds are emitted that influence the chemistry of the atmosphere and global climate.  相似文献   

6.
Abstract. We investigated the hypothesis that predation risk affects mating decisions in the intertidal snail Littorina plena in Bamfield Inlet, Northeast Pacific. First, we conducted a field tethering experiment to test the assumption that mating pairs of snails are more susceptible to predation than solitary individuals, and then performed a laboratory experiment to quantify the effect of predation threat on the propensity of snails to form mating pairs. Our results support the hypothesis, in that "mating pairs" were more frequently killed than single snails in the field, and snails were less likely to form mating pairs in the laboratory when simulated predation risk was high (chemical cues from crushed conspecifics were added to the water) than when it was low (no risk cues were added to the water). In contrast to several earlier studies, we found no effect of individual size on snail susceptibility to predation, perhaps because our two size classes were contiguous and snails within them were not dissimilar enough. The results of the behavioral experiment were consistent with this lack of individual size effect on snail vulnerability; both size classes of snails showed a significant and similar tendency to decrease mating when predation risk was high. Taken together, the results of this and recent studies indicate that predators can considerably affect the behavior of littorinid snails, including their movement patterns, feeding, and reproduction. We argue that greater consideration should be given to how marine invertebrates trade off predation risk and activities related to reproduction.  相似文献   

7.
Studies on the implications of food web interactions to community structure have often focused on density-mediated interactions between predators and their prey. This approach emphasizes the importance of predator regulation of prey density via consumption (i.e. lethal effects), which, in turn, leads to cascading effects on the prey's resources. A more recent and contrasting view emphasizes the importance of non-lethal predator effects on prey traits (e.g. behaviour, morphology), or trait-mediated interactions. On rocky intertidal shores in New England, green crab ( Carcinus maenas ) predation is thought to be important to patterns of algal abundance and diversity by regulating the density of herbivorous snails ( Littorina littorea ). We found, however, that risk cues from green crabs can dramatically suppress snail grazing, with large effects on fucoid algal communities. Our results suggest that predator-induced changes in prey behaviour may be an important and under-appreciated component of food web interactions and community dynamics on rocky intertidal shores.  相似文献   

8.
Numerous experimental studies have reported inducible defenses in macroalgae, but most of them have been conducted in laboratory environments where algae were maintained detached from the substratum and in artificial flow regimes. The results of those experiments might not reflect the natural situation, which can only be studied in situ. We examined whether the brown macroalgae Dictyota kunthii (C. Agardh) Greville and Macrocystis integrifolia (Bory) show inducible defenses following exposure to different grazing levels (direct, water-borne cues from nearby grazed conspecifics, presence of a non-grazing herbivore and natural grazing) in field experiments, striving to maintain natural conditions as much as possible. We measured palatability of algae after exposure to different grazing levels by using live algae and agar-based food containing non-polar extracts. M. integrifolia showed no induction of defenses (at least not of non-polar compounds), suggesting constitutive defenses, absence of defenses (tolerance) or use of another strategy to avoid herbivory. These results are similar to those from previous laboratory experiments. In D. kunthii, defense was induced after two weeks of direct grazing by amphipods under field conditions. Water-borne cues from nearby grazed conspecifics, presence of a non-grazing herbivore and natural grazing did not induce defenses. Induction of defense in response to direct grazing agrees with results from a previous laboratory study, but while indirect cues induced defenses in the laboratory, there was no measurable induced defense in the field. Probably chemical cues from grazers are diluted quickly in the field, not reaching concentrations that cause induction of defenses. This might be the reason why in some algae induction by direct grazing is a more important defensive strategy than induction by water-borne cues. The results from our study also suggest that laboratory experiments showing induced defenses in response to grazed neighbours or mere grazer presence need to be interpreted with caution.  相似文献   

9.
Summary The feeding ecology of adult desert snails (Sphincterochila zonata), inhabiting a loess plain in the Negev Desert, was studied during a 7-year period. Energy flow and soil turnover determinations were made at the individual and population level on the basis of field observations and data derived from laboratory simulations. Sphincterochila zonata were only active on 8–27 winter days annually, otherwise they were dormant. The snails fed exclusively on algae that grew on the soil surface following rain. The mean annual dry-weight biomass of algae was 197.4(±118.1) gr·m-2. The dry weight biomass of snails ranged from 0.02–0.14 gr·m-2. Annual production in the food chain varied substantially from year to year (1–1539 Kj·m-2), but the net annual energy balance of the snails was always positive. Soil crust turnover, resulting from grazing of snails on algae, was estimated at 142 kg·hectare-1 during the study period.The annual magnitude of energy flow and soil turnover is determined by the soil surface moisture regime which in turn, is a function of rainfall patterns. Sphincterochila zonata may serve an important role in Negev ecosystems by dispersing soil algae and altering soil structure. The snails are not subject to substanding predation by rodents but may occasionally serve as an important food source for migrating birds.  相似文献   

10.
An account is given of a laboratory investigation designed to evaluate the extent to which the freshwater pulmonate snail Biomphalaria glabrata (Say) can utilize various species of aquatic plants, mainly macrophytes, when presented in the following forms over different time scales: normal plants; dried plant material; homogenized plant material in calcium alginate matrices; water-soluble filtrates of plant homogenates in the medium. The following propositions, derived from the theory of phased coevolution of components of the module consisting of the epiphytic bacteria, algae, snails and macrophytes, are evaluated on the basis of the present results and others including those obtained in this laboratory. That as the snails had become specialized to exploit surface communities of epiphytic algae, decaying plant material and dissolved organic matter (DOM) early in their evolutionary history they would continue to exploit these resources when they later become associated with aquatic macrophytes. That pulmonate snails would tend to be feeding generalists capable of adapting to food of varying chemical composition, given sufficient time, provided it was sufficiently small or flaccid. That although macrophytes and snails show a strong positive relationship, the living macrophyte tissue would be little used by the snails. That the hard outer envelope, inherited from their terrestrial ancestors, would remain as the major defence mechanism of aquatic macrophytes against attack by snails and other aquatic invertebrates. That aquatic macrophytes would invest little in the nutrient deficiency strategy to reduce attack by invertebrates such as snails. That truly aquatic submerged macrophytes would not possess secondary plant compounds (SPC) that would be molluscicidal. Emergent parts of subaquatic or aquatic plants might be expected to be better sources of SPC with molluscicidal factors than submerged aquatic plants. Species of epiphytic or planktonic algae might be better sources of SPC with molluscicidal effects than aquatic macrophytes. That the strategies developed by pulmonate snails for obtaining their energy supplies would not be conducive to rapid speciation. The analysis of the present and other related results supports these propositions. Predictions based on the theory of mutualism involving the snails, macrophytes and other components of the module also receive some support from an analysis of the present results. The additional empirical work that could be undertaken to test this theory is briefly discussed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The seasonal growth and reproductive phenology of Neorhodomela aculeata (Perestenko) Masuda and Ceramium kondoi Yendo, and the food preferences of herbivorous snails were examined to elucidate (i) why snails select the fronds of N. aculeata for their habitat; and (ii) the survival strategies of the two red algae under grazing pressures. The maximal lengths and weights of both algal species were recorded for each season over a 12‐month period beginning with the spring of 2003. C. kondoi grew in length at a faster rate than N. aculeate, whereas the turf alga N. aculeata produced new branches from the tips of broken branches. The reproductive period of C. kondoi was between the spring and summer but the reproductive organs of N. aculeata were observed throughout the year. The algal loss rate of fresh N. aculeata to snails was low but snails had a food preference for N. aculeata when compared to C. kondoi in an artificial food experiment. These results indicate that snails may adapt to chemical compounds characteristic of N. aculeata and that the alga further reduces predation damage by its structural resistance. In conclusion, the survival strategies of C. kondoi appear to be rapid growth, seasonal sexual reproduction, and a delicately branched frond morphology that reduces stable feeding patterns of its predators plus high tissue nitrogen content, whereas the survival strategy of N. aculeata includes regenerative growth responses, structural toughness and chemical defenses while under the grazing pressure of herbivorous snails.  相似文献   

12.
We examined the ability of the amphipod Gammarus pulexto detect chemical cues released from potential food sources. Therefore, response of G. pulex to chemical cues from food was tested in paired-choice laboratory experiments. Comparisons were made between artificial and natural leaves, with and without the importance of aufwuchs, and with different components of the aufwuchs community. Our study demonstrated that G. pulex actively chose its food and that G. pulex is most strongly attracted to the aufwuchs on discs rather than to the leaf itself. Fungi and bacteria are more important in the food selection process than algae probably because fungal and bacterial cues are more specific cues for decaying leaves than algal cues, since algae also grow on mineral substrates and then do not contribute to leaf decomposition.  相似文献   

13.
INTERACTIONS BETWEEN EPIPHYTES, MACROPHYTES AND FRESHWATER SNAILS: A REVIEW   总被引:7,自引:0,他引:7  
Epiphyton-feeding snails are often a conspicuous feature ofthe invertebrate fauna associated with submerged freshwatermacrophytes. In this paper I review the different interactionstaking place between snails, epiphyton and macrophytes. Studies on grazing by freshwater snails show that snails havea great impact on the biomass, productivity and species compositionof epiphytic communities. Direct effects of grazing on livingmacrophytes are probably of minor importance, but snails havea significant indirect effect on macrophytes by reducing thedetrimental impact of epiphyton (e.g. shading and competitionfor nutrients). Predators of snails can have a mediating effecton snail-epiphyton-macrophyte interactions, both through a directpredatorprey relationship (reducing the density of snails) andby inducing a habitat displacement of the snails. In a studyon the effects of predation by the pumpkinseed sunfish (a specializedsnail predator) it was found that predation indirectly affectsthe biomass and species composition of epiphytic algae by regulatingthe density of snails.  相似文献   

14.
The relationships between producers (e.g., macrophytes, phytoplankton and epiphytic algae) and snails play an important role in maintaining the function and stability of shallow ecosystems. Complex relationships exist among macrophytes, epiphytic algae, phytoplankton, and snails. We studied the effects of snail communities (consisting of Radix swinhoei, Hippeutis cantori, Bellamya aeruginosa, and Parafossarulus striatulus) on the biomass of phytoplankton and epiphytic algae as well as on the growth of three species of submerged macrophytes (Hydrilla verticillata, Vallisneria natans, and one exotic submerged plant, Elodea nuttallii) in a 90‐day outdoor mesocosm experiment conducted on the shore of subtropical Lake Liangzihu, China. A structural equation model showed that the snail communities affected the submerged macrophytes by grazing phytoplankton and epiphytic algae (reduction in phytoplankton Chl‐a and epiphytic algal abundance), enhancing the biomass of submerged macrophytes. Highly branched macrophytes with high surfaces and morphologies and many microhabitats supported the most snails and epiphytic algae (the biomass of the snail communities and epiphytic algae on Hverticillata was greater than that on Vnatans), and snails preferred to feed on native plants. Competition drove the snails to change their grazing preferences to achieve coexistence.  相似文献   

15.
Summary Three scales of wound-induced chemical responses in plants are identified: (1) highly localised chemical changes associated with disruption of cell compartmentation; (2) changes induced in cells surrounding the damaged area, forming a kind of halo around the damage, and (3) more widely-dispersed changes which may affect an entire organ, branch or plant. A brief review of the literature reveals that such chemical responses are very widespread in plants, and many of the substances formed are known to affect adversely the growth, development, or reproduction of insects. It is argued that wound-induced changes in plant chemistry represent for insects a powerful selective pressure for the dispersal of grazing. Levels and patterns of invertebrate grazing in a range of herbaceous and deciduous woody plants sampled at the end of the growing seasons were examined. Leaves of many species exhibited a strikingly evident over-dispersion of grazing initiations, and in some cases the arrangement of holes appeared close to regularity. The pattern of damage between leaves was, in most cases, heavily biased towards a large proportion of leaves receiving a low level of grazing. These highly dispersed patterns of grazing damage are consistent with the hypothesis that wound-induced responses play an important role in determining patterns of insect feeding. They have important implications for the expected levels of insect exploitation of host plants and for the advantages to the plant of distributing grazing damage evenly through the canopy.  相似文献   

16.
Toth GB  Karlsson M  Pavia H 《Oecologia》2007,152(2):245-255
Herbivory on marine macroalgae (seaweeds) in temperate areas is often dominated by relatively small gastropods and crustaceans (mesoherbivores). The effects of these herbivores on the performance of adult seaweeds have so far been almost exclusively investigated under artificial laboratory conditions. Furthermore, several recent laboratory studies with mesoherbivores indicate that inducible chemical resistance may be as common in seaweeds as in vascular plants. However, in order to further explore and test the possible ecological significance of induced chemical resistance in temperate seaweeds, data are needed that address this issue in natural populations. We investigated the effect of grazing by littorinid herbivorous snails (Littorina spp.) on the individual net growth of the brown seaweed Ascophyllum nodosum in natural field populations. Furthermore, the capacity for induced resistance in the seaweeds was assessed by removing herbivores and assaying for relaxation of defences. We found that ambient densities of gastropod herbivores significantly reduced net growth by 45% in natural field populations of A. nodosum. Seaweeds previously exposed to grazing in the field were less consumed by gastropod herbivores in feeding bioassays. Furthermore, the concentration of phlorotannins (polyphenolics), which have been shown to deter gastropod herbivores, was higher in the seaweeds that were exposed to gastropod herbivores in the field. This field study corroborates earlier laboratory experiments and demonstrates that it is important to make sure that the lack of experimental field data on marine mesoherbivory does not lead to rash conclusions about the lack of significant effects of these herbivores on seaweed performance. The results strongly suggest that gastropods exert a significant selection pressure on the evolution of defensive traits in the seaweeds, and that brown seaweeds can respond to attacks by natural densities of these herbivores through increased chemical resistance to further grazing.  相似文献   

17.
Summary Interactions among environmental stresses, plant defensive characteristics, and plant nutrient status may significantly affect an alga's susceptibility to herbivores. Following desiccation, the palatable seaweed Gracilaria tikvahiae was less susceptible to grazing by the sea urchin Arbacia punctulata while the unpalatable alga Padina gymnospora became more susceptible. Increased grazing on desiccated Padina appeared to result from a loss of chemical defenses following desiccation. Palatable plants treated with organic extracts from desiccated Padina plants were consumed at more than twice the rate of plants treated with extracts from undesiccated plants. Increased susceptibility of Padina did not correlate with changes in protein content of the alga; reduced grazing on desiccated Gracilaria was associated with a decrease in protein content. When Padina was grazed by Arbacia or mechanically damaged to mimic urchin grazing, its susceptibility to Arbacia decreased within 1 to 5 days. These results demonstrate that history of physical or biological stress may affect a plant's susceptibility to herbivory. We hypothesize that urchins cue primarily on attractiveness features (e.g. nutrient content) of highpreference algae and deterrent features (e.g. chemical defenses) of low-preference algae. Stresses may therefore increase, decrease, or not affect a plant's susceptibility to herbivory depending upon the primary feeding cues used by the herbivore, the defensive mechanisms used by the plant, and the way these are altered by various environmental stresses.  相似文献   

18.
Observations on a diatom bloom in Loch Leven, Scotland   总被引:4,自引:0,他引:4  
A study was made on a freshwater planktonic population of centric diatoms, mainly Stephanodiscus rotula (Kütz.) Hendey, in Loch Leven, Kinross, Scotland. The observations were analyzed in relation to changes in water temperature and chemistry, parasitism by a chytridiaceous fungus, grazing by a recently described protozoan and competition from another alga ( Synechococcux sp.). Each of these factors is thought to have affected the recorded rise and fall in diatom population density, in particular, silica limitation, fungal parasitism and protozoan grazing.
The protozoan involved ( Asterocaelum algophilum Canter) forms digestion cysts, the predominantly diatomaceous contents of which suggested very selective feeding but laboratory experiments with dual cultures did not confirm this. They indicated that both the size and quality of algae affected their suitability as food. Feeding activities of Asterocaelum seemed to be more or less confined to a solid surface; grazing rates in cultures shaken to maintain the animals and algae in suspension were low relative to those observed in unshaken cultures. This suggests that much of the grazing occurred on diatoms that had sunk onto the sediments.  相似文献   

19.
《Journal of phycology》2001,37(Z3):49-49
Toth, G. & Pavia, H. Göteborg University, Tjärnö Marine Biological Laboratory, SE-452 96 Strömstad, Sweden It is well established that water-borne chemical cues from predators or predator-wounded conspecifics can induce defensive changes of aquatic prey animals, but few examples of such inducible defenses have been reported for aquatic algae. We have found that water-borne cues from actively feeding gastropods (Littorina obtusata) can induce increased concentrations of phlorotannins in the intertidal brown seaweed Ascophyllum nodosum. Elicited A. nodosum plants are also less susceptible to further grazing bygastropods compared to undamaged plants. Since seaweeds have poorly developed internal transport systems and may not be able to elicit systemic induced chemical defenses through conveyance of internal signals, induction through water-borne cues ensures that seaweeds can anticipate future periwinkle attacks without receiving direct damage by herbivores. We have also found that water-borne cues from a parasite (Parvilucifera infectans), can serve as signals to induce morphological defence in a toxic dinoflagellate (Alexandrium ostenfeldii). The dinoflagellates formed temporary cysts when exposed to filtrates from cultures with infected conspecifics. The effect of the filtrate disappeared after 8 h, indicating that the chemical cues are short-lived. Furthermore, the cysts were resistant to parasite infections for several weeks after exposure to direct parasite contact, indicating that they are an effective defense. We suggest that induction of defenses in marine algae through water-borne cues may be a common phenomenon and that more examples will be revealed as this field of science progresses.  相似文献   

20.
1. Freshwater snails often lack visible growths of algae on their shells. We tested three possible mechanisms that may account for this (grazing, snail-derived nutrients and chemical defences), using the ramshorn snail Helisoma trivolvis .
2. The experiments were carried out in floating plastic enclosures in a pond and comprised seven treatments. Grazing treatments were: a lone snail (ungrazed, as self-grazing does not occur), Helisoma with conspecifics, Helisoma with the co-occurring pond snail Physa sp., empty shells with Helisoma , and ungrazed empty shells. Nutrient effects were possible in all treatments with occupied shells (lone snail; Helisoma with conspecifics, and with Physa ) versus absent in other treatments. Testing for chemical defences compared algae on fresh empty shells, weathered shells (outer organic periostracum layer absent) and boiled fresh shells (with denaturization of susceptible proteins).
3. Diatoms dominated algal assemblages on snail shells. Although the upright diatom Gomphonema gracile was abundant on all shells, it was dominant on the shells of snails housed with other snail grazers (either Helisoma or Physa ).
4. Only the lone snail (nutrients but no grazing) showed higher algal biomass, so presumably any nutrient effect in the treatments with grazers was masked. Both Helisoma and Physa were observed apparently grazing on Helisoma shells, and consequently algal biomass in multi-snail treatments was similar to that on empty shells. Scanning electron microscopy revealed that algal density was highest near the aperture of live snails, but not empty shells; this is consistent with a nutrient addition effect. There was no evidence of chemical defences against algal growth.
5. In soft-bottomed freshwater habitats with abundant snails, shells of living snails provide nutrient-augmented substrata that may indirectly boost overall snail production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号