首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our 1 year study was aimed at assessing seasonal patterns and controls on phytoplankton primary production (PPR) and biomass (chlorophyll a) in a fourth order section of the middle Cape Fear River in North Carolina, USA, and to determine the impact of three low-head lock and dam (LD) structures on these variables within the 70 km study reach of this coastal river. Mean concentrations of NO3 –N, NH4 +–N and soluble reactive phosphorus (SRP) averaged 52.9, 6.0, and 3.6 μmol l−1 in monthly sampling, while the average light attenuation coefficient was 2.4 m−1. The average euphotic depth was 2.1 m. Nutrient concentrations and attenuation coefficients were not significantly different above versus below each LD, or along the entire study reach. Significantly higher concentrations of dissolved O2 below versus above each LD were attributed to re-aeration during spillway transit. No seasonal pattern in physicochemical properties was apparent. Phytoplankton chlorophyll a concentrations ranged from <1 to 36 μg l−1, while rates of primary production ranged from 18 to 2,580 mg C m−2 day−1, with values for both variables peaking in the spring and early summer. Chlorophyll a and primary productivity values were consistently higher above versus below each LD in May and June suggesting a seasonal effect, but values were otherwise similar such that overall means were not significantly different. Several factors point to light as the primary control on phytoplankton in the middle Cape Fear River: high nutrient concentrations; a low ratio of euphotic : mixing depth (0.46); progressive increases in chlorophyll a and radiocarbon uptake in all treatments in quarterly nutrient enrichment bioassays conducted at levels of irradiance elevated relative to in situ river values; and consistently low quarterly values of (maximum rate of chlorophyll-normalized C uptake; ≤3.7 mg C mg chl a−1 h−1) and I k (light saturation parameter; ≤104 μmol photons m−2 s−1) for photosynthetic light–response (PI) curves. Handling editor: L. Naselli-Flores  相似文献   

2.
Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ∼116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ± 21 g m−2 (mean ± 1SE) and vascular ANPP had recovered to 138 ± 32 g m−2 y−1, which was not different than that of a nearby unburned stand (160 ± 48 g m−2 y−1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ± 180 (dry) and 4008 ± 233 g m−2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ± 68 g m−2 y−1 in the mature site, but in the dry chronosequence it peaked at 410 ± 43 g m−2 y−1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls over these factors will help predict how changes in climate and fire regime will affect the carbon balance of Interior Alaska. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
An investigation into the changing phytoplankton biomass and total water column production during autumn sea ice formation in the eastern Weddell Sea, Antarctica showed reduced biomass concentrations and extremely low daily primary production. Mean chlorophyll-a concentration for the entire study period was extremely low, 0.15±0.01 mg.m−3 with a maximum of 0.35 mg.m−3 found along the first transect to the east of the grid. Areas of low biomass were identified as those either associated with heavy grazing or with deep mixing and corresponding low light levels. In most cases phytoplankton in the <20-μm size classes dominated. Integrated biomass to 100 m ranged from 7.1 to 28.0 mg.m−2 and correlated positively with surface chlorophyll-a concentrations. Mean PBmax (photosynthetic capacity) and αB (initial slope of the photosynthesis-irradiance curve) were 1.25±0.19 mgC. mgChla −1.h−1 and 0.042±0.009 mgC.mgChla −1.h−1.(μmol.m−2.s−1)−1 respectively. The mean index of photoadaptation,I k, was 32.2±4.0 μmol.m−2.s−1 and photoinhibition was found in all cases. Primary production was integrated to the critical depth (Z cr) at each production station and ranged from 15.6 to 41.5 mgC.m−2.d−1. It appears that, other than grazing intensity, the relationship between the critical depth and the mixing depth (Z mix) is an important factor as, ultimately, light availability due both to the late season and growing sea ice cover severely limits production during the austral autumn.  相似文献   

4.
Changes in the composition of plant species induced by grassland degradation may alter soil respiration rates and decrease carbon sequestration; however, few studies in this area have been conducted. We used net primary productivity (NPP), microbial biomass carbon (MBC), and soil organic carbon (SOC) to examine the changes in soil respiration and carbon balance in two Chinese temperate grassland communities dominated by Leymus chinensis (undisturbed community; Community 1) and Puccinellia tenuiflora (degraded community; Community 2), respectively. Soil respiration varied from 2.5 to 11.9 g CO2 m−2 d−1 and from 1.5 to 9.3 g CO2 m−2 d−1, and the contribution of root respiration to total soil respiration from 38% to 76% and from 25% to 72% in Communities 1 and 2, respectively. During the growing season (May–September), soil respiration, shoot biomass, live root biomass, MBC and SOC in Community 2 decreased by 28%, 39%, 45%, 55% and 29%, respectively, compared to those in Community 1. The considerably lower net ecosystem productivity in Community 2 than in Community 1 (104.56 vs. 224.73 g C m−2 yr−1) suggests that the degradation has significantly decreased carbon sequestration of the ecosystems.  相似文献   

5.
Summary The Mediterranean coralCladocora caespitosa often occurs in large beds, i.e. populations of hemispherical clonies with stock densities varying between 1.9 and 4 coloneis ·m−2. Laboratory measurements of volume, skeleton weight, surface and number of corallites per colony, coupled with mean annual growth rates evaluated through sclerochronology, allowed for the estimation of biomass, skeleton bulk density, calcimass (carbonate standing stock) and secondary production (both organic and inorganic) of twoC. caespitosa beds at 4 and 9 m depth. The mean colony biomass varied between 0.73 and 0.99 kg dw ·m−2, corresponding to a calcimass between 2 and 5 kg CaCO3·m−2. Organic secondary production was 215.5–305.4 g dw of polyps ·m−2·y−1, while the potential (mineral) production was 1.1–1.7 kg CaCO3·m−2·y−1, for the year 1996–1997. These values show thatC. caespitosa is one of the major carbonate producers within the Mediterranean and one of the major epibenthic species originating stable carbonate frameworks both in recent and past times.  相似文献   

6.
To test the feasibility of CO2 remediation by microalgal photosynthesis, a modified type of flat-plate photobioreactor [Hu et al. (1996) Biotechnol Bioeng 51:51–60] has been designed for cultivation of a high-CO2-tolerant unicellular green alga Chlorococcum littorale. The modified reactor has a narrow light path in which intensive turbulent flow is provided by streaming compressed air through perforated tubing into the culture suspension. The length of the reactor light path was optimized for the productivity of biomass. The interrelationship between cell density and productivity, as affected by incident light intensity, was quantitatively assessed. Cellular ultrastructural and biochemical changes in response to ultrahigh cell density were investigated. The potential of biomass production under extremely high CO2 concentrations was also evaluated. By growing C. littorale cells in this reactor, a CO2 fixation rate of 16.7 g CO2 l−1 24 h−1 (or 200.4 g CO2 m−2 24 h−1) could readily be sustained at a light intensity of 2000 μmol m−2 s−1 at 25 °C, and an ultrahigh cell density of well over 80 g l−1 could be maintained by daily replacing the culture medium. Received: 20 October 1997 / Received revision: 19 December 1997 / Accepted: 24 January 1998  相似文献   

7.
Primary production of phytoplankton and secondary production of a daphnid and a chaoborid were studied in a small eutrophic pond. The gross primary production of phytoplankton was 290 gC m−2 per 9 months during April–December. Regression analysis showed that the gross primary production was related to the incident solar radiation and the chlorophylla concentration and not to either total phosphorus or total inorganic nitrogen concentration. The mean chlorophylla concentration (14.2 mg m−3), however, was about half the expected value upon phosphorus loading of this pond. The mean zooplankton biomass was 1.60 g dry weight m−2, of whichDaphnia rosea and cyclopoid copepods amounted to 0.69 g dry weight m−2 and 0.61 g dry weight m−2, respectively. The production ofD. rosea was high during May–July and October and the level for the whole 9 months was 22.6 g dry weight m−2.Chaoborus flavicans produced 10 complete and one incomplete cohorts per year. Two consecutive cohorts overlapped during the growing season. The maximum density, the mean biomass, and the production were 19,100 m−2, 0.81 g dry weight m−2, and 11.7 g dry weight m−2yr−1, respectively. As no fish was present in this pond, the emerging biomass amounted to 69% of larval production. The production ofC. flavicans larvae was high in comparison with zooplankton production during August–September, when the larvae possibly fed not only on zooplankton but also algae.  相似文献   

8.
Two variants of open photobioreactors were operated at surface-to-volume ratios up to 170 m−1. The mean values for July and September obtained for photobioreactor PB-1 of 224 m2 culture area (length 28 m, inclination 1.7%, thickness of algal culture layer 6 mm), operated in Třeboň (49N), Czech Republic, were: net areal productivity, P net = 23.5 and 11.1 g dry weight (DW) m−2 d−1; net photosynthetic efficiency (based on PAR – Photosynthetic Active Radiation), η = 6.48 and 5.98%. For photobioreactor PB-2 of 100 m2 culture area (length 100 m, inclination 1.6%, thickness of algal culture layer 8 mm) operated in Southern Greece (Kalamata, 37N) the mean values for July and October were: P net = 32.2 and 18.1 g DW m−2 d−1, η = 5.42 and 6.07%. The growth rate of the alga was practically linear during the fed-batch cultivation regime up to high biomass densities of about 40 g DW L−1, corresponding to an areal density of 240 g DW m−2 in PB-1 and 320 g DW m−2 in PB-2. Night biomass loss (% of the daylight productivity, P L) caused by respiration of algal cells were: 9–14% in PB-1; 6.6–10.8% in PB-2. About 70% of supplied CO2 was utilized by the algae for photosynthesis. The concentration of dissolved oxygen (DO) increased from about 12 mg L−1 at the beginning to about 35 mg L−1 at the end of the 100 m long path of suspension flow in PB-2 at noon on clear summer days. Dissipation of hydraulic energy and some parameters of turbulence in algal suspension on culture area were estimated quantitatively.  相似文献   

9.
This work aims to: (1) correlate photochemical activity and productivity, (2) characterize the flow pattern of culture layers and (3) determine a range of biomass densities for high productivity of the freshwater microalga Chlorella spp., grown outdoors in thin-layer cascade units. Biomass density, irradiance inside culture, pigment content and productivity were measured in the microalgae cultures. Chlorophyll-fluorescence quenching was monitored in situ (using saturation-pulse method) to estimate photochemical activities. Photobiochemical activities and growth parameters were studied in cultures of biomass density between 1 and 47 g L−1. Fluorescence measurements showed that diluted cultures (1–2 g DW L−1) experienced significant photostress due to inhibition of electron transport in the PSII complex. The highest photochemical activities were achieved in cultures of 6.5–12.5 g DW L−1, which gave a maximum daylight productivity of up to 55 g dry biomass m−2 day−1. A midday depression of maximum PSII photochemical yield (F v/F m) of 20–30% compared with morning values in these cultures proved to be compatible with well-performing cultures. Lower or higher depression of F v/F m indicated low-light acclimated or photoinhibited cultures, respectively. A hydrodynamic model of the culture demonstrated highly turbulent flow allowing rapid light/dark cycles (with frequency of 0.5 s−1) which possibly match the turnover of the photosynthetic apparatus. These results are important from a biotechnological point of view for optimisation of growth of outdoor microalgae mass cultures under various climatic conditions.  相似文献   

10.
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3–N), ammonium (NH4–N), nitrite (NO2–N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3–N+NH4–N+NO2–N), SRP and DRSi were 131.6, 1.2 and 155.6 μM, respectively. The maximum Chl a concentration was 19.5 mg m−3 in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 μM and from 0.4 to 0.95 μM, respectively. From 1963 to 2004, N:P ratios also increased from 30–40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m−3, nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l−1, much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.  相似文献   

11.
Whether plant invasion increases ecosystem carbon (C) stocks is controversial largely due to the lack of knowledge about differences in ecophysiological properties between invasive and native species. We conducted a field experiment in which we measured ecophysiological properties to explore the response of the ecosystem C stocks to the invasion of Spartina alterniflora (Spartina) in wetlands dominated by native Scirpus mariqueter (Scirpus) and Phragmites australis (Phragmites) in the Yangtze Estuary, China. We measured growing season length, leaf area index (LAI), net photosynthetic rate (Pn), root biomass, net primary production (NPP), litter quality and litter decomposition, plant and soil C and nitrogen (N) stocks in ecosystems dominated by the three species. Our results showed that Spartina had a longer growing season, higher LAI, higher Pn, and greater root biomass than Scirpus and Phragmites. Net primary production (NPP) was 2.16 kg C m−2 y−1 in Spartina ecosystems, which was, on average, 1.44 and 0.47 kg C m−2 y−1 greater than that in Scirpus and Phragmites ecosystems, respectively. The litter decomposition rate, particularly the belowground decomposition rate, was lower for Spartina than Scirpus and Phragmites due to the lower litter quality of Spartina. The ecosystem C stock (20.94 kg m−2) for Spartina was greater than that for Scirpus (17.07 kg m−2), Phragmites (19.51 kg m−2) and the mudflats (15.12 kg m−2). Additionally, Spartina ecosystems had a significantly greater N stock (698.8 g m−2) than Scirpus (597.1 g m−2), Phragmites ecosystems (578.2 g m−2) and the mudflats (375.1 g m−2). Our results suggest that Spartina invasion altered ecophysiological processes, resulted in changes in NPP and litter decomposition, and ultimately led to enhanced ecosystem C and N stocks in the invaded ecosystems in comparison to the ecosystems with native species.  相似文献   

12.
The rates of photosynthesis and dark CO2 fixation were determined in 12 soda lakes of the Kulunda steppe. Characterization of the phototrophic communities was given, and the cell numbers of anoxygenic phototrophic bacteria (APB) were determined. The photosynthetic production in different lakes was substantially different, constituting from 0.01 to 1.32 g C m−2 day−1. The main part of carbon dioxide was assimilated in the process of oxygenic photosynthesis. Anoxygenic photosynthesis was recorded only in 5 of the 12 lakes studied. Its values varied between 0.06 and 0.42 g C m−2 day−1, constituting from 8 to 34% of the total photosynthetic activity. Anoxygenic photosynthesis was revealed in the lakes where the number of APB reached 107–109 CFU cm−3. Dark CO2 fixation constituted 0.01–0.15 g C m−2 day−1. Positive correlation was observed between the primary production value and water alkalinity. No relationship between productivity and water mineralization was revealed in the 30–200 g l−1 range, whereas an increase in salinity above 200 g l−1 suppressed the photosynthetic activity. The mechanisms of influence of the environmental factors on the rate of photosynthesis are discussed.  相似文献   

13.
The calcareous marine haptophyte algae, the coccolithophorids, are of global environmental significance because of the impact of their blooms on the carbon cycle. The coccolithophorid, Pleurochrysis carterae was grown semi-continuously in paddlewheel-driven outdoor raceway ponds over a period of 13 months in Perth, Western Australia. The mean total dry weight productivity of P. carterae was 0.19 g.L−1.d−1 with cell lipid and CaCO3 contents of up to 33% and 10% of dry weight respectively, equivalent to an annual total biomass productivity of about 60 t.ha−1.y−1 and 21.9 t.ha−1.y−1 total lipid and 5.5 t.ha−1.y−1 total calcium carbonate production. Throughout the culture period there was little protozoan contamination or contamination by other algae. The pH of the growth medium increased to pH 11 during the day and was found to be a useful variable for monitoring the state of the culture. A comparison of the growth of P. carterae and Dunaliella salina in the raceway ponds showed no significant differences between these two species with regard to areal total dry weight productivity and lipid content.  相似文献   

14.
Spectral light attenuation, from the surface to 20 m, was followed on 15 sunny days and compared with the vertical phytoplankton distribution. The most penetrating wavelengths lie between 565 and 590 nm. High phytoplankton density causes a rapid loss of blue light with depth. Consequently the yellow and red regions of the spectrum contain a relatively high proportion of the light energy present at a particular depth. The vertical attenuation coefficients of monochromatic light Kd(λ) in the 400 to 700 nm region are influenced significantly by the phytoplankton biomass. The specific light attenuation coefficient for chlorophyll a (kc) is highest below 550 nm (e.g. 450 nm, surface layer: kc = 0.027 m2 · mg−1, n = 14; lowermost layer: kc = 0.044 m2 · mg−1, n = 9).  相似文献   

15.
Landmanagement practices such as no-tillage agriculture and tallgrass prairie restoration have been proposed as a possible means to sequester atmospheric carbon, helping to refurbish soil fertility and replenish organic matter lost as a result of previous agricultural management practices. However, the relationship between land-use changes and ecosystem structure and functioning is not yet understood. We studied soil and vegetation properties over a 4-year period (1995–98), and assembled measurements of microbial biomass, soil organic carbon (SOC) and nitrogen (N), N-mineralization, soil surface carbon dioxide (CO2) flux, and leached C and N in managed (maize; Zea mays L.) and natural (prairie) ecosystems near the University of Wisconsin Agricultural Research Station at Arlington. Field data show that different management practices (tillage and fertilization) and ecosystem type (prairie vs maize) have a profound influence on biogeochemistry and water budgets between sites. These measurements were used in conjunction with a dynamic terrestrial ecosystem model, called IBIS (the Integrated Biosphere Simulator), to examine the long-term effects of land-use changes on biogeochemical cycling. Field data and modeling suggest that agricultural land management near Arlington between 1860 and 1950 caused SOC to be depleted by as much as 63% (native SOC approximately 25.1 kg C m−2). Reductions in N-mineralization and microbial biomass were also observed. Although IBIS simulations depict SOC recovery in no-tillage maize since the 1950s and also in the Arlington prairie since its restoration was initiated in 1976, field data suggest otherwise for the prairie. This restoration appears to have done little to increase SOC over the past 24 years. Measurements show that this prairie contained between 28% and 42% less SOC (in the top 1 m) than the no-tillage maize plots and 40%–47% less than simulated potential SOC for the site in 1999. Because IBIS simulates competition between C3 and C4 grass species, we hypothesized that current restored prairies, which include many forbs not characterized by the model, could be less capable of sequestering C than agricultural land planted entirely in monocultural grass in this region. Model output and field measurements show a potential 0.4 kg C m−2 y−1 difference in prairie net primary production (NPP). This study indicates that high-productivity C4 grasslands (NPP = 0.63 kg C m−2 y−1) and high-yield maize agroecosystems (10 Mg ha−1) have the potential to sequester C at a rate of 74.5 g C m−2 y−1 and 86.3 g C m−2 y−1, respectively, during the next 50 years across southern Wisconsin. Received 28 December 1999; accepted 11 December 2000.  相似文献   

16.
Headwater streams are key sites of nutrient and organic matter processing and retention, but little is known about temporal variability in gross primary production (GPP) and ecosystem respiration (ER) rates as a result of the short duration of most metabolism measurements in lotic ecosystems. We examined temporal variability and controls on ecosystem metabolism by measuring daily rates continuously for 2 years in Walker Branch, a first-order deciduous forest stream. Four important scales of temporal variability in ecosystem metabolism rates were identified: (1) seasonal, (2) day-to-day, (3) episodic (storm-related), and (4) inter-annual. Seasonal patterns were largely controlled by the leaf phenology and productivity of the deciduous riparian forest. Walker Branch was strongly net heterotrophic throughout the year with the exception of the open-canopy spring when GPP and ER rates were co-equal. Day-to-day variability in weather conditions influenced light reaching the streambed, resulting in high day-to-day variability in GPP particularly during spring (daily light levels explained 84% of the variance in daily GPP in April). Episodic storms depressed GPP for several days in spring, but increased GPP in autumn by removing leaves shading the streambed. Storms depressed ER initially, but then stimulated ER to 2–3 times pre-storm levels for several days. Walker Branch was strongly net heterotrophic in both years of the study, with annual GPP being similar (488 and 519 g O2 m−2 y−1 or 183 and 195 g C m−2 y−1) but annual ER being higher in 2004 than 2005 (−1,645 vs. −1,292 g O2 m−2 y−1 or −617 and −485 g C m−2 y−1). Inter-annual variability in ecosystem metabolism (assessed by comparing 2004 and 2005 rates with previous measurements) was the result of the storm frequency and timing and the size of the spring macroalgal bloom. Changes in local climate can have substantial impacts on stream ecosystem metabolism rates and ultimately influence the carbon source and sink properties of these important ecosystems.  相似文献   

17.
Microphytobenthos production in the Gulf of Fos, French Mediterranean coast   总被引:1,自引:1,他引:0  
Microphytobenthic oxygen production was studied in the Gulf of Fos (French Mediterranean coast) during 1991/1992 using transparent and dark benthic chambers. Nine stations were chosen in depths ranging from 0.5 to 13 m, which represents more than 60% of bottoms in the Gulf. Positive net microphytobenthic oxygen production was seasonally detected down to 13 m; the maximum value attained was 60 mg O2 m−2 h−1 (0.7–0.8 g O2 m−2 d−1) in sediments at 0.5 m depth during spring and winter. Respiration rates were maximum in the sediments located at the mussel farm (5 m), in the center of the Gulf, with 135 mg O2 m−2 h−1 in spring (3.2 g O2 m−2 d−1); in the other locations, it ranged from 3.3 to 58.2 mg O2 m−2 h−1 (0.08–1.4 g O2 m−2 d−1). Compared to phytoplankton, microphytobenthos production was higher only in the bottoms < 1 m depth. In deeper bottom waters, phytoplankton production could be absent due to light limitation, while microphytobenthos was still productive. Phytoplankton production m−2 was generally higher than microphytobenthic production. Microphytobenthic biomass, higher than phytoplanktonic, varied from 27 to 379 mg Chl a m−2, the maximum in the mussel farm sediments, with the minimum in sandy shallow bottoms. Pigment analysis showed that microphytobenthos consisted mainly of diatoms (Chl c and fucoxanthin) but other algal groups containing Chl b could become seasonally important. A Principal Component Analysis suggested that the main statistical factors explaining the distribution of our observations may be interpreted in terms of enrichment in phaeopigments and light; the role of Chl a appearing paradoxically as secondary in benthic production rates. Phaeopigments are mainly constituted by phaeophorbides, which indicate grazing processes. The influence of the mussel farm on the oxygen balance is noticeable in the whole Gulf.  相似文献   

18.
Periphyton (epilithon) gross primary production (GPP) was estimated using the DCMU-fluorescence method in the Yenisei River. In the unshaded littoral zone, chlorophyll a concentration (Chl a) and GPP value varied from 0.83 to 973.74 mg m−2and 2–304,425 O2 m−2 day−1 (0.64–95 133 mg C m−2 day−1), respectively. Positive significant correlation (r = 0.8) between daily GPP and periphyton Chl a was found. Average ratio GPP:Chl a for periphyton was 36.36 mg C mg Chl a m−2 day−1. The obtained GPP values for the Yenisei River have a high significant correlation with values predicted by a conventional empirical model for stream periphyton. We concluded that the DCMU-fluorescence method can be successfully used for measuring of gross primary production of stream phytoperiphyton at least as another useful tool for such studies.  相似文献   

19.
Outdoor tank cultivation of several Porphyra (nori) species was carried out from late November 2002 through early May 2003 using 40 L (with a surface of 0.25 m2), 600 L (1 m2), and 24,000 L (30 m2) fiberglass or PVC tanks provided with continuous aeration and seawater flow. Sexual and asexual spores produced from cultured conchocelis and frozen thalli in the laboratory, respectively, were subsequently grown to produce young fronds (ca. 5-10 cm) in an average time of 8 weeks. Growth in outdoor tanks and ponds was possible for a period of up to 20 weeks (i.e. growth season), with yields above 100 g FW m−2d−1occurring during 12-14 weeks from late December through late March, when seawater temperatures were below 20 C. These yields correlated with the species and depended on the type of tanks in which the algae were cultivated, with the highest yields observed for Porphyra sp. and Porphyra yezoensis when fertilized twice a week with NH4 Cl and NaH2 PO4in 40 L tanks. Calculations of productivity for an entire growth season based on ≥ 100 g FW m−2d−1yields exceed the average productivities using seeded nets in open sea, for all Porphyra species tested (0.96-4.06 kg DW m−2 season−1vs. 0.7-1.0 kg DW m−2of net season−1). Therefore, tank cultivation of Porphyra can offer an additional source of nori biomass to international markets. Land-based tank cultivation also offers an environmentally friendly practice that allows for the manipulation of growth conditions to enrich seaweeds with specific, valuable chemicals such as protein and minerals.  相似文献   

20.
Phytoplankton biomass and productivity were measured during two cruises in the Bransfield Strait in December 1991 (D91) and January/February 1993 (J93). Strong seasonal variability in productivity values was observed due to differences in the physiological response of phytoplankton. However, although the photosynthetic capacity of phytoplankton was markedly lower in D91 [P m B =0.61 ± 0.25 mg C (mg Chla)−1 h−1] than in J93 [P m B =2.18 ± 0.91 mg C (mg Chla)−1 h−1], average water column chlorophyll values in different areas of the strait were approximately similar in D91 (49–78 mg Chla m−2) and J93 (22–76 mg Chla m−2). The spatial distribution of chlorophyll was patchy and generally associated with the influence of the different water masses that meet together in the Bransfield Strait. No correlation was found between the mixed layer depth and either the integrated chlorophyll or the productivity. Our results suggest that major phytoplankton blooms in the Bransfield Strait are advected from the nearby Gerlache Strait or Bellingshausen Sea following the main eastward surface currents. Accepted: 5 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号