首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Genetic variability among seven Chilean Indian populations (Aymara, Atacameño, Diaguita, Pehuenche, Mapuche, Alacaluf, and Yagan) is measured in terms of net codon differences per locus from gene frequency data on seven serologic markers. Indices of cultural and linguistic differences are computed surveying the various ethnographic accounts of these tribal populations. Of the variables, culture, language, geography, and the degree of Caucasoid admixture, only geography seems to be the important factor in explaining the variabilities in genetic distances among these populations. An empirical relationship between geographic distance and gene identity is also established and shown graphically.  相似文献   

2.
A total of 1462 rainbow trout (Salmo gairdneri Richardson) representing four California domestic strains, were examined electrophoretically at 24 gene loci to investigate the amount of genetic variability within strains and genetic differentiation between strains, relative to wild populations. Estimated heterozygosities of 0.071 to 0.134 were similar to those reported for wild populations and thus indicated that the domestic strains were at least as variable as wild populations. Genetic distances between strains ranged from 0.011 to 0.067, values typical of the level of differentiation observed between local conspecific populations in a variety of organisms. It was suggested that this high level of heterozygosity is due to mixing of populations in the strains' histories and perhaps also to balancing selection.  相似文献   

3.
Sesarini C  Remis MI 《Genetica》2008,133(3):295-306
Sinipta dalmani is an Argentine grasshopper whose chromosome polymorphisms have been widely studied through cytogenetic, morphometric, and fitness component analyses. The present work analysed molecular and morphometric variation in seven chromosomally differentiated populations from Entre Rios and Buenos Aires provinces to analyse population structure. Molecular studies were performed studying RAPD loci and morphometric analyses were carried out measuring five morphometric traits. Genetic variability was high in all studied populations and was characterized by a decrease in H as a function of latitude and temperature. Both conventional F(ST) analysis and Bayesian approach for dominant marker showed that there were significant genetic differences among all populations, between provinces, and among populations within provinces. Entre Rios populations showed higher mean numbers of migrants per generation as well as low genetic differentiation and high gene flow with almost all populations whereas Buenos Aires populations may be considered as a result of a more recently colonization. There is considerable morphometric variation between populations and this variation correlates with latitude and temperature. Our results suggest that selection contributes to phenotypic differentiation among populations by moulding the differences in trait means whereas genetic drift is responsible for differences in the matrix of variance-covariance. The gene flow detected is insufficient to prevent phenotypic and chromosome divergences.  相似文献   

4.
Yan G  Zhang G  Fang X  Zhang Y  Li C  Ling F  Cooper DN  Li Q  Li Y  van Gool AJ  Du H  Chen J  Chen R  Zhang P  Huang Z  Thompson JR  Meng Y  Bai Y  Wang J  Zhuo M  Wang T  Huang Y  Wei L  Li J  Wang Z  Hu H  Yang P  Le L  Stenson PD  Li B  Liu X  Ball EV  An N  Huang Q  Zhang Y  Fan W  Zhang X  Li Y  Wang W  Katze MG  Su B  Nielsen R  Yang H  Wang J  Wang X  Wang J 《Nature biotechnology》2011,29(11):1019-1023
The nonhuman primates most commonly used in medical research are from the genus Macaca. To better understand the genetic differences between these animal models, we present high-quality draft genome sequences from two macaque species, the cynomolgus/crab-eating macaque and the Chinese rhesus macaque. Comparison with the previously sequenced Indian rhesus macaque reveals that all three macaques maintain abundant genetic heterogeneity, including millions of single-nucleotide substitutions and many insertions, deletions and gross chromosomal rearrangements. By assessing genetic regions with reduced variability, we identify genes in each macaque species that may have experienced positive selection. Genetic divergence patterns suggest that the cynomolgus macaque genome has been shaped by introgression after hybridization with the Chinese rhesus macaque. Macaque genes display a high degree of sequence similarity with human disease gene orthologs and drug targets. However, we identify several putatively dysfunctional genetic differences between the three macaque species, which may explain functional differences between them previously observed in clinical studies.  相似文献   

5.
Germplasm characterization and evolutionary process in viable populations are important links between the conservation and utilization of plant genetic resources. Here, an investigation is made, based on molecular and biochemical techniques for assessing and exploiting the genetic variability in germplasm characterization of taro, which would be useful in plant breeding and ex situ conservation of taro plant genetic resources. Geographical differentiation and phylogenetic relationships of Indian taro, Colocasia esculenta (L.) Schott, were analyzed by random amplified polymorphic DNA (RAPD) and isozyme of seven enzyme systems with specific reference to the Muktakeshi accession, which has been to be proved resistant to taro leaf blight caused by P. colocasiae. The significant differentiations in Indian taro cultivars were clearly demonstrated by RAPD and isozyme analysis. RAPD markers showed higher values for genetic differentiation among taro cultivars and lower coefficient of variation than those obtained from isozymes. Genetic differentiation was evident in the taro accessions collected from different regions of India. It appears that when taro cultivation was introduced to a new area, only a small fraction of genetic variability in heterogeneous taro populations was transferred, possibly causing random differentiation among locally adapted taro populations. The selected primers will be useful for future genetic analysis and provide taro breeders with a genetic basis for selection of parents for crop improvement. Polymorphic markers identified in the DNA fingerprinting study will be useful for screening a segregating population, which is being generated in our laboratory aimed at developing a taro genetic linkage map.  相似文献   

6.
We have tested the hypothesis that genetic differences among conspecific populations may result in diverse responses to selection, using natural populations of Drosophila melanogaster. Selection for ethanol tolerance in a tube measuring knockdown resistance was imposed on five West Coast populations. In 24 generations the selected lines increased their mean knockdown times, on average, by a factor of 2.7. An initially weak latitudinal cline was steepened by selection. The two southernmost populations showed the same increases in the selected character, but differed consistently in their correlated responses in characters related to ethanol tolerance. This result indicates that the populations responded to selection by different genetic changes. Selection decreased female body weight and increased resistance to acetone, suggesting components of the response unrelated to ethanol metabolism. The Adhs allele was favored by selection in all populations at the onset, but increased in frequency only in the selected lines of the southernmost population. There was a correlation between latitude and Adh frequency changes, suggesting that fitnesses of the Adh alleles were dependent on the genetic background. Genetic background also had a large effect on the loss of fitness due to selection. Genetic drift between replicate lines caused more variation in selection response than initial genetic differences between populations. This result demonstrates the importance of genetic drift in divergence among natural populations undergoing uniform selection, since the effective population sizes approached those of small natural populations. Drift caused greater divergence between selected replicates than control replicates. Implications of this result for the genetic model of selection response are discussed.  相似文献   

7.
1. Genetic variation at five microsatellite loci was investigated in six sea trout ( Salmo trutta ) populations to describe their spatio-temporal genetic variation in north-western Spain. We observed significant genetic variation between river basins, and isolation by distance with restricted gene flow between neighbouring rivers, which suggests an important homing behaviour.
2. Despite these populations suffering a serious demographic decline during 1998, we did not detect any reduction in their genetic variation, suggesting a reasonably high effective population size and temporal stability.
3. Genetic differences among rivers should be taken into account in future management activities. Given the high genetic variability and the temporal stability observed, we believe that no supportive breeding programmes are presently needed in these populations.  相似文献   

8.
Hutchings JA 《Heredity》2011,106(3):421-437
Genetic variability in reaction norms reflects differences in the ability of individuals, populations and ultimately species to respond to environmental change. By increasing our understanding of how genotype × environment interactions influence evolution, studies of genetic variation in phenotypic plasticity serve to refine our capacity to predict how populations will respond to natural and anthropogenic environmental variability, including climate change. Given the extraordinary variability in morphology, behaviour and life history in salmonids, one might anticipate the research milieu on reaction norms in these fishes to be empirically rich and intellectually engaging. Here, I undertake a review of genetic variability in continuous and discontinuous (threshold) norms of reaction in salmonid fishes, as determined primarily (but not exclusively) by common-garden experiments. Although in its infancy from a numerical publication perspective, there is taxonomically broad evidence of genetic differentiation in continuous, threshold and bivariate reaction norms among individuals, families and populations (including inter-population hybrids and backcrosses) for traits as divergent as embryonic development, age and size at maturity, and gene expression. There is compelling inferential evidence that plasticity is heritable and that population differences in reaction norms can reflect adaptive responses, by natural selection, to local environments. As a stimulus for future work, a series of 20 research questions are identified that focus on reaction-norm variability, selection, costs and constraints, demographic and conservation consequences, and genetic markers and correlates of phenotypic plasticity.  相似文献   

9.
Genetic polymorphism was analyzed for five blood proteins: albumin - Al, esterase - Es, alpha(1)B-glycoprotein - Xk, transferrin - Tf and hemoglobin - Hb in 200 Thoroughbred (TB) and 124 Argentine Creole (AC) horses. Of the five systems examined, Tf and Hb were not in Hardy-Weinberg equilibrium in either breed and Es was not in equilibrium in the Creole breed. Genetic variability, estimated as average heterozygosity, was higher in AC (H = 0.585 +/- 0.131) than in TB (H = 0.353 +/- 0.065). The genetic differentiation between these two populations (F(ST)) was 0.109. Thus, of the total genetic differences between breeds, the proportion of genetic variation attributable to breed differences was about 10%; the remaining 90% was due to individual variation within breeds. The high degree of genetic variability seen in Argentine Creole horses could be a consequence of natural selection. Selection of TB through the centuries has most likely modified the gene pool of the ancestral population, with a consequent reduction in variability at certain loci. Probably, different mechanisms exist for maintaining polymorphism at these loci in TB and in AC horses. Heterozygosity may have played a fundamental role in adaptation.  相似文献   

10.
Genetic differentiation within a species' range is determined by natural selection, genetic drift, and gene flow. Selection and drift enhance genetic differences if populations are sufficiently isolated, while gene flow precludes differentiation and local adaptation. Over large geographical areas, these processes can create a variety of scenarios, ranging from admixture to a high degree of population differentiation. Genetic differences among populations may signal functional differences within a species' range, potentially leading to population or ecotype-specific responses to global change. We investigated differentiation within the geographical range of two butterfly species along a broad latitudinal gradient. This gradient is the primary axis of climatic variation, and many ecologists expect populations at the poleward edge of this gradient to expand under climate change. Our study species inhabit a shared ecosystem and differ in body size and resource specialization; both also find their poleward range limit on an island. We find evidence for divergence of peripheral populations from the core in both taxa, suggesting the potential for genetic distinctiveness at the leading edge of climate change. We also find differences between the species in the extent of peripheral differentiation with the smaller and more specialized species showing greater population divergence (microsatellites and mtDNA) and reduced gene flow (mtDNA). Finally, gene flow estimates in both species differed strongly between two marker types. These findings suggest caution in assuming that populations are invariant across latitude and thus will respond as a single ecotype to climatic change.  相似文献   

11.
Genetic divergence and variability at 14 enzyme loci were examined in and between Italian populations of two edaphic Oribatid (Acarida, Oribatida) species, Steganacarus (Steganacarus) magnus (8 populations) and S. (S.) hirsutus (1 population). The seven populations belonging to S. (S.) magnus can be divided into two groups according to their phenotype, form anomala (A) (MON, ARG, AST, CDO) and form magna (M) (MAL, MAM, RIF) while another can be considered as hybrid between the two preceding groups (ZOC). Genetic identity (I) values between the S. (S.) magnus populations in spite of their morphological differences ranged from 0.977 to 1.000 showing the great genetic similarity of simple local populations while those of S. (S.) hirsutus indicated two distinct morphological species. The genetic distances between all the populations examined were very low despite the ecological differences and geographical distances between the collecting sites. Genetic variability estimates in all the populations of both species were very low when compared to those reported for most arthropods. Some explanatory considerations are suggested.  相似文献   

12.
Genetic variability in stress tolerance (heat, desiccation, and hypoxia) and fitness (virulence and reproduction potential) among natural populations of Steinernema carpocapsae was assessed by estimating phenotypic differences. Significant differences were observed in stress tolerance among populations. Populations isolated from North Carolina showed significantly more stress tolerance than those isolated from Ohio. Significant differences were also observed in populations isolated from the same locality. Survival of infective juveniles after exposure to 40°C for 2 h ranged from 37 to 82%. A threefold difference was observed in infective juvenile survival following exposure to osmotic desiccation or hypoxic condition. Several populations tested were superior to the most widely used strain (‘All’ strain) in stress tolerance traits, with one population KMD33, being superior to the ‘All’ strain in all traits. Fitness as expressed by virulence and reproductive potential differed significantly among populations but showed less variability than the stress tolerance traits. All populations tested had a reproductive potential greater than or similar to that of the ‘All’ strain and most of them caused >60% insect mortality of the wax moth larvae, Galleria mellonella. The high genetic variability in stress tolerance among natural populations suggests the feasibility of using selection for genetic improvement of these traits.  相似文献   

13.
Artificial selection for short wing was performed in two Drosophila melanogaster populations with partially different gene pools: the C populations were derived from a Canton stock while the H lines were derived from a cross between Canton and a b, cn, vg strain. It is shown that in both populations selection on females (CF, HF) was more effective than selection on males (CM, HM). This difference cannot be explained in terms of differences in additive genetic variability between the two sexes because: (1) both sexes contribute to the genetic variability utilized by selection applied to one sex only, and (2) switching selection pressure on females in the M lines does not result in a response comparable to that obtained in the F populations; this rules out almost completely recombination as the responsible agent for the differences between the selection limits reached by M and F selections.-These results, together with several additional observations concerning sexual dimorphism, fitness and the effect of natural selection, suggest that a complex interaction should be involved in the differential response of M and F lines, controlling the wing length phenotype.  相似文献   

14.
15.
Genetic differentiation of Trialeurodes vaporariorum (Westwood 1856) populations was examined using biochemical and allozyme analysis. For biochemical analysis, general esterase and glutathion‐S‐transferase were tested. Allozyme genetic variability in 11 populations of T. vaporariorum was investigated using five loci from four enzyme systems. Although there are large variations between populations, T. vaporariorum is grouped into two populations with geographic barriers, based on Nei's genetic distance in the Baekdudaegan Mountains. Within these two groups, low migration and linkage disequilibrium reveal that populations tend to be influenced by gene drift rather than uniform selection pressures. The effect of genetic drift is greater than the effect of uniform selection by insecticides or host plant resistance, which is suggested by the FST estimates in this study. Based on this basic research, more effective whitefly control programs could be built in the future.  相似文献   

16.
Analysis of allozyme data of the European freshwater fish Cottus gobio showed marked genetic differentiation across drainage basins in northeastern Bavaria, which points to the existence of at least two cryptic taxa. Genetic variability within populations differed significantly between these two taxa, which could be due to historical (bottlenecks) or ecological reasons (population size). To distinguish between these two hypotheses we sampled 12 distinct populations from Rhine, Elbe and Danube drainages. Using allozyme data we examined the influence of population size and isolation on genetic variability within populations. We used spatial extent of populations (patch size) as a measure for population size. To estimate isolation we calculated a compound measure which took into account patch size and distance to all neighbouring populations. Both patch size and isolation were highly correlated with genetic variability, explaining ≈95% of the variance of genetic variability within populations. Furthermore, analysis of covariance suggests that the difference in genetic variability between taxa may be explained by differences in population size.  相似文献   

17.
This study points out the evidence of a hybrid zone between two groups of genetically differentiated populations of chestnut (Castanea sativa Mill.) in Turkey. Genetic structure, gene flow and introgression levels, based on 16 allozyme loci, were investigated on 34 population samples spanning the entire C. sativa distribution area in this country. The occurrence of the hybrid zone, located in the Bithynian region, was inferred in a group of populations showing the following genetic characteristics: (i) enhanced genetic variability and intermediate allelic frequencies between those of the Western and Eastern groups of populations; (ii) sharp and concordant changes in allele frequencies; (iii) decreased gene flow with the Western and Eastern populations. Starting from the cline width estimated to be 324 km, strength of selection was evaluated from the gene flow distance, as indicated from the degree of genetic structuring outside the hybrid zone. Evolutionary processes shaping the observed genetic differentiation and introgression are discussed on the basis of palynological data, palaeoclimatic events and evidence of hybridization found in other plant and animal species in the same region.  相似文献   

18.
We studied the role of genetic variability of donor beds in establishing transplantation criteria for the Mediterranean seagrass Posidonia oceanica. Horizontal rhizomes, collected from three geographically distinct populations, were transplanted into a common bed at a highly human‐impacted locality. The transplantation site was located near one of the donor populations. After three years, the shoots collected in the population adjacent to the transplanting site showed the lowest growth performance. Genetic variability, assessed through the analysis of hypervariable microsatellite regions, and growth performance followed a similar trend. The shoots growing and branching at the highest rate were those collected from populations with the highest heterozygosity values, despite greater geographic distance. No genetic differences were found between the transplanted shoots and shoots from donor meadows, as expected due to the low rate of sexual reproduction in P. oceanica and the short time that had passed since the transplants. The problem of affecting the local gene pool by the introduction of foreign genotypes could arise, but introduction of new alleles could balance the degradation of genetic variability caused by human impact. In general our study suggests that the genetic variability of source material is an important aspect to consider in the development of seagrass restoration strategies.  相似文献   

19.
Genetic diversity within populations of Fusarium pseudograminearum isolated from wheat grains from the Canadian provinces of Alberta and Saskatchewan was investigated. Three restriction enzymes (EcoRI, HaeIII, and PstI) were used to carry out restriction analysis of the nuclear ribosomal DNA (nrDNA) intergenic spacer region (IGS region) and eight primers were used to generate inter-simple sequence-repeat (ISSR) molecular markers. Our study indicated substantially high genetic diversity within these two populations, but low genetic differentiation and frequent gene flow among populations. The IGS data showed no genetic distinction between the two Alberta populations and only minor genetic differentiation between the Saskatchewan and Alberta populations. Analysis of molecular variance indicated that most genetic variability resulted from differences among isolates within populations. Multilocus linkage disequilibrium analysis suggested a panmictic population genetic structure and the occurrence of significant recombination in F. pseudograminearum. Regular gene flow and random mating between isolates from different populations could result in novel genotypes with both improved pathological and biological traits.  相似文献   

20.
B. N. Singh 《Genetica》1984,64(3):221-224
Based on the differences in the gene arrangement frequencies average genetic distance has been estimated among natural populations of Drosophila ananassae. Genetic distance obtained by pairwise comparison ranges from 0.002 to 0.371. The most differentiated populations are those from the Andaman and Nicobar Islands. Although the populations from localities separated by a small geographic distance show less genetic distance, the relation between genetic distance and geographic distance does not seem to be positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号