首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Several flagellar genes in Helicobacter pylori are dependent on sigma(54) (RpoN) for their expression. These genes encode components of the basal body, the hook protein, and a minor flagellin, FlaB. A protein-protein interaction map for H. pylori constructed from a high-throughput screen of a yeast two-hybrid assay (http://pim.hybrigenics.com/pimriderext/common/) revealed interactions between sigma(54) and the conserved hypothetical protein HP0958. To see if HP0958 influences sigma(54) function, the corresponding gene was disrupted with a kanamycin resistance gene (aphA3) in H. pylori ATCC 43504 and the resulting mutant was analyzed. The hp0958:aphA3 mutant was nonmotile and failed to produce flagella. Introduction of a functional copy of hp0958 into the genome of the hp0958:aphA3 mutant restored flagellar biogenesis and motility. The hp0958:aphA3 mutant was deficient in expressing two sigma(54)-dependent reporter genes, flaB'-'xylE and hp1120'-'xylE. Levels of sigma(54) in the hp0958 mutant were substantially lower than those in the parental strain, suggesting that the failure of the mutant to express the genes in the RpoN regulon and produce flagella was due to reduced sigma(54) levels. Expressing sigma(54) at high levels by putting rpoN under the control of the ureA promoter restored flagellar biogenesis and motility in the hp0958:aphA3 mutant. Turnover of sigma(54) was more rapid in the hp0958:aphA3 mutant than it was in the wild-type strain, suggesting that HP0958 supports wild-type sigma(54) levels in H. pylori by protecting it from proteolysis.  相似文献   

4.
Expression of the two Helicobacter pylori flagellin proteins FlaA and FlaB is required for full motility and persistent infection of the gastric mucosa. The mechanisms and regulation of the biosynthesis and export of flagella in H. pylori are still poorly understood. Scrutiny of the H. pylori 26695 genome sequence revealed homologues of FliQ and FlhB. The roles of the fliQ and flhB genes in H. pylori were investigated by the construction and characterisation of defined isogenic mutants. The results indicate that these genes are involved in the flagellar expression, adhesion to and colonisation of the gastric mucosa.  相似文献   

5.
Helicobacter mustelae causes chronic gastritis and ulcer disease in ferrets. It is therefore considered an important animal model of human Helicobacter pylori infection. High motility even in a viscous environment is one of the common virulence determinants of Helicobacter species. Their sheathed flagella contain a complex filament that is composed of two distinctly different flagellin subunits, FlaA and FlaB, that are coexpressed in different amounts. Here, we report the cloning and sequence determination of the flaA gene of H. mustelae NCTC12032 from a PCR amplification product. The FlaA protein has a calculated molecular mass of 53 kDa and is 73% homologous to the H. pylori FlaA subunit. Isogenic flaA and flaB mutants of H. mustelae F1 were constructed by means of reverse genetics. A method was established to generate double mutants (flaA flaB) of H. mustelae F1 as well as H. pylori N6. Genotypes, motility properties, and morphologies of the H. mustelae flagellin mutants were determined and compared with those of the H. pylori flaA and flaB mutants described previously. The flagellar organizations of the two Helicobacter species proved to be highly similar. When the flaB genes were disrupted, motility decreased by 30 to 40%. flaA mutants retained weak motility by comparison with strains that were devoid of both flagellin subunits. Weakly positive motility tests of the flaA mutants correlated with the existence of short truncated flagella. In H. mustelae, lateral as well as polar flagella were present in the truncated form. flaA flaB double mutants were completely nonmotile and lacked any form of flagella. These results show that the presence of both flagellin subunits is necessary for complete motility of Helicobacter species. The importance of this flagellar organization for the ability of the bacteria to colonize the gastric mucosa and to persist in the gastric mucus remains to be proven.  相似文献   

6.
7.
Unique mechanism of Helicobacter pylori for colonizing the gastric mucus   总被引:2,自引:0,他引:2  
Helicobacter pylori is a human gastric pathogen causing chronic infection. Urease and motility using flagella are essential factors for its colonization. Urease of H. pylori exists both on the surface and in the cytoplasm, and is involved in neutralizing gastric acid and in chemotactic motility. H. pylori senses the concentration gradients of urea in the gastric mucus layer, then moves toward the epithelial surface by chemotactic movement. The energy source for the flagella movement is the proton motive force. The hydrolysis of urea by the cytoplasmic urease possibly generates additional energy for the flagellar rotation in the mucus gel layer.  相似文献   

8.
HP0958 is an essential motility gene in Helicobacter pylori   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
Flagellar motility is essential for the ability of Helicobacter pylori to colonize the gastric mucosa. Expression of the flagella is controlled by a complex regulatory cascade involving the two-component system FlgR-HP244, the sigma factors sigma54 and sigma28 and the anti-sigma28 factor FlgM. The protein-protein interaction map of H. pylori, which is based on a high-throughput two-hybrid screen (Rain et al., 2001. Nature 409, 211-215) indicated a protein-protein interaction between the gene product of ORF hp137 and both the histidine kinase HP244 and the flagellar hook protein HP908. We hypothesized that HP137 might be involved in a feedback regulatory mechanism controlling the activity of histidine kinase HP244. Here we demonstrate that HP137 does not participate in the regulation of flagellar gene expression, neither in H. pylori nor in the closely related bacterium Campylobacter jejuni.  相似文献   

11.
12.
Helicobacter pylori is a human gastric pathogen associated with gastric and duodenal ulcers as well as gastric cancer. Mounting evidence suggests this pathogen's motility is prerequisite for successful colonization of human gastric tissues. Here, we isolated an H. pylori G27 HP0518 mutant exhibiting altered motility in comparison to its parental strain. We show that the mutant's modulated motility is linked to increased levels of O-linked glycosylation on flagellin A (FlaA) protein. Recombinant HP0518 protein decreased glycosylation levels of H. pylori flagellin in vitro, indicating that HP0518 functions in deglycosylation of FlaA protein. Furthermore, mass spectrometric analysis revealed increased glycosylation of HP0518 FlaA was due to a change in pseudaminic acid (Pse) levels on FlaA; HP0518 mutant-derived flagellin contained approximately threefold more Pse than the parental strain. Further phenotypic and molecular characterization demonstrated that the hyper-motile HP0518 mutant exhibits superior colonization capabilities and subsequently triggers enhanced CagA phosphorylation and NF-κB activation in AGS cells. Our study shows that HP0518 is involved in the deglycosylation of flagellin, thereby regulating pathogen motility. These findings corroborate the prominent function of H. pylori flagella in pathogen-host cell interactions and modulation of host cell responses, likely influencing the pathogenesis process.  相似文献   

13.
14.
15.
The predatory bacterium Bdellovibrio bacteriovorus swims rapidly by rotation of a single, polar flagellum comprised of a helical filament of flagellin monomers, contained within a membrane sheath and powered by a basal motor complex. Bdellovibrio collides with, enters and replicates within bacterial prey, a process previously suggested to firstly require flagellar motility and then flagellar shedding upon prey entry. Here we show that flagella are not always shed upon prey entry and we study the six fliC flagellin genes of B. bacteriovorus, finding them all conserved and expressed in genome strain HD100 and the widely studied lab strain 109J. Individual inactivation of five of the fliC genes gave mutant Bdellovibrio that still made flagella, and which were motile and predatory. Inactivation of the sixth fliC gene abolished normal flagellar synthesis and motility, but a disordered flagellar sheath was still seen. We find that this non-motile mutant was still able to predate when directly applied to lawns of YFP-labelled prey bacteria, showing that flagellar motility is not essential for prey entry but important for efficient encounters with prey in liquid environments.  相似文献   

16.
Flagellar filament self‐assembles from the component protein, flagellin or FliC, with the aid of the capping protein, HAP2 or FliD. Depending on the helical parameters of filaments, flagella from various species are divided into three groups, family I, II, and III. Each family coincides with the traditional classification of flagella, peritrichous flagella, polar flagella, and lateral flagella, respectively. To elucidate the physico‐chemical properties of flagellin to separate families, we chose family I flagella and family II flagella and examined how well the exchangeability of a combination of FliC and/or FliD from different families is kept in filament formation. FliC or FliD of Salmonella enterica serovar Typhimurium (Salty; family I) were exchanged with those of Escherichia coli (Escco; family I) or Pseudomonas aeruginosa (Pseae; family II). In a Salty fliC deletion mutant, Escco FliC formed short filaments, but Pseae FliC did not form filaments. In a Salty fliD deletion mutant, both Escco FliD and Pseae FliD allowed Salty FliC to polymerize into short filaments. In conclusion, FliC can be exchanged among the same family but not between different families, while FliD serves as the cap protein even in different families, confirming that FliC is essential for determining families, but FliD plays a subsidiary role in filament formation. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
In Helicobacter pylori 26695, a gene annotated HP1575 encodes a putative protein of unknown function which shows significant similarity to part of the C-terminal domain of the flagellar export protein FlhB. In Salmonella enterica, this part (FlhB(CC)) is proteolytically cleaved from the full-length FlhB, a processing event that is required for flagellar protein export and, thus, motility. The role of FlhB (HP0770) and its C-terminal homologue HP1575 was studied in H. pylori using a range of nonpolar deletion mutants defective in HP1575, HP0770, and the CC domain of HP0770 (HP0770(CC)). Deletion of HP0770 abolished swimming motility, whereas mutants carrying a deletion of either HP1575 or HP0770(CC) retained their ability to swim. An H. pylori strain containing deletions in both HP1575 and HP0770(CC) was nonmotile and did not produce flagella, suggesting that at least one of the two proteins had to be present for flagellar assembly to occur. Indeed, motility was restored when HP1575 was reintroduced into this strain immediately downstream of, but not fused to, the truncated HP0770 gene. Thus, HP1575 can functionally replace HP0770(CC) in this background. Like FlhB in S. enterica, HP0770 appeared to be proteolytically processed at a conserved NPTH processing site. However, mutation of the proline contained within the NPTH site of HP0770 did not affect motility and flagellar assembly, although it clearly interfered with processing when the protein was heterologously produced in Escherichia coli.  相似文献   

18.
The enterohepatic Helicobacter species Helicobacter hepaticus colonizes the murine intestinal and hepatobiliary tract and is associated with chronic intestinal inflammation, gall stone formation, hepatitis, and hepatocellular carcinoma. Thus far, the role of H. hepaticus motility and flagella in intestinal colonization is unknown. In other, closely related bacteria, late flagellar genes are mainly regulated by the sigma factor FliA (σ28). We investigated the function of the H. hepaticus FliA in gene regulation, flagellar biosynthesis, motility, and murine colonization. Competitive microarray analysis of the wild type versus an isogenic fliA mutant revealed that 11 genes were significantly more highly expressed in wild-type bacteria and 2 genes were significantly more highly expressed in the fliA mutant. Most of these were flagellar genes, but four novel FliA-regulated genes of unknown function were identified. H. hepaticus possesses two identical copies of the gene encoding the FliA-dependent major flagellin subunit FlaA (open reading frames HH1364 and HH1653). We characterized the phenotypes of mutants in which fliA or one or both copies of the flaA gene were knocked out. flaA_1 flaA_2 double mutants and fliA mutants did not synthesize detectable amounts of FlaA and possessed severely truncated flagella. Also, both mutants were nonmotile and unable to colonize mice. Mutants with either flaA gene knocked out produced flagella morphologically similar to those of wild-type bacteria and expressed FlaA and FlaB. flaA_1 mutants which had flagella but displayed reduced motility did not colonize mice, indicating that motility is required for intestinal colonization by H. hepaticus and that the presence of flagella alone is not sufficient.  相似文献   

19.
The many genes involved in flagellar structure and function in Escherichia coli and Salmonella typhimurium are located in three major clusters on the chromosome: flagellar regions I, II and III. We have found that region III does not consist of a contiguous set of flagellar genes, as was thought, but that in E. coli there is almost 7 kb of DNA between the filament cap gene, fliD, and the next known flagellar gene, fliE; a similar situation occurs in S. typhimurium. Most of this DNA is unrelated to flagellar function, since a mutant in which 5.4 kb of it had been deleted remained fully motile and chemotactic as judged by swarming on semi-solid agar. We have therefore subdivided flagellar region III into two regions, IIIa and IIIb. The known genes in region IIIa are fliABCD, all of which are involved in filament structure and assembly, while region IIIb contains genes fliEFGHIJKLMNOPQR, all of which are related to formation of the hook (basal-body)-complex or to even earlier assembly events. We have found that fliD, the last known gene in region IIIa, is immediately followed by two additional genes, both necessary for flagellation, which we have designated fliS and fliT. They encode small proteins with deduced molecular masses of about 15 kDa and 14 kDa, respectively. The functions of FliS and FliT remain to be determined, but they do not appear to be members of the axial family of structural proteins to which FliD belongs.  相似文献   

20.
Early studies of a ureB mutant derivative of Helicobacter pylori had suggested that urease is needed for motility and that urease action helps energize flagellar rotation. Here we report experiments showing that motility is unaffected by deletion of ureA and ureB (urease genes) or by inactivation of ureB alone, especially if H. pylori strains used as recipients for transformation with mutant alleles are preselected for motility. This result was obtained with the strain used in the early studies (CPY3401) and also with 15 other strains, 3 of which can colonize mice. We conclude that urease is not needed for H. pylori motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号