首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Body-weight estimates of fossil primates are commonly used to infer many important aspects of primate paleobiology, including diet, ecology, and relative encephalization. It is important to examine carefully the methodologies and problems associated with such estimates and the degree to which one can have confidence in them. New regression equations for predicting body weight in fossil primates are given which provide body-weight estimates for most nonhominid primate species in the fossil record. The consequences of using different subgroups (evolutionary “grades”) of primate species to estimate fossil-primate body weights are explored and the implications of these results for interpreting the primate fossil record are discussed. All species (fossil and extant) were separated into the following “grades”: prosimian grade, monkey grade, ape grade, anthropoid grade, and all-primates grade. Regression equations relating lower molar size to body weight for each of these grades were then calculated. In addition, a female-anthropoid grade regression was also calculated for predicting body weight infernales of extinct, sexually dimorphic anthropoid species. These equations were then used to generate the fossil-primate body weights. In many instances, the predicted fossil-primate body weights differ substantially from previous estimates.  相似文献   

2.
A new look at the scaling of size in mammalian eyes   总被引:1,自引:0,他引:1  
  相似文献   

3.
In vivo study of mastication in adult cercopithecine primates demonstrates a link between mandibular symphyseal form and resistance to “wishboning,” or lateral transverse bending. Mechanical consideration of wishboning at the symphysis indicates exponentially higher stresses along the lingual surface with increasing symphyseal curvature. Lengthening the anteroposterior width of the symphysis acts to resist these higher loads. Interspecific adult cercopithecine allometries show that both symphyseal curvature and symphyseal width exhibit positive allometry relative to body mass. The experimental and allometric data support an hypothesis that the cercopithecine mandibular symphysis is designed to maintain functional equivalence—in this case dynamic strain similarity—in wishboning stress and strain magnitudes across adult cercopithecines. We test the hypothesis that functional equivalence during masticatory wishboning is maintained throughout ontogeny by calculating relative stress estimates from morphometric dimensions of the mandibular symphysis in two cercopithecine primates, Macaca fascicularis and M. nemestrina. Results indicate no significant differences in relative stress estimates among the two macaque ontogenies and an interspecific sample of adult papionin primates. Further, relative stress estimates do not change significantly throughout ontogeny in either species. These results offer the first evidence for the maintenance of functional equivalence in stress and strain levels during postnatal growth in a habitually loaded cranial structure. Scaling analyses demonstrate significant slope differences for both symphyseal curvature and width between the ontogenetic and interspecific samples. The distinct interspecific cercopithecine slopes are realized by a series of ontogenetic transpositions in both symphyseal curvature and width. Throughout papionin ontogeny, symphyseal curvature increases with less negative allometry, while symphysis width increases with less positive allometry versus the interspecific pattern. As symphyseal curvature and width are inversely proportional to one another in estimating relative stresses, functionally equivalent stress levels are maintained both ontogenetically and interspecifically, because the relatively slower rate of allometric increase in symphyseal curvature during growth is compensated for by a slower rate of allometric increase in symphyseal width. These results indicate the primacy of maintaining functional equivalence during growth and the need for ontogenetic data in understanding the evolutionary processes that affect form–function relations as well as the interspecific patterning of adult form across a clade. J. Morphol. 235:157–175, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
5.
Metabolic scaling is the relationship between organismal metabolic rate and body mass. Understanding the patterns and causes of metabolic scaling provides a powerful foundation for predicting biological processes at the level of individuals, populations, communities, and ecosystems. Despite intense interest in, and debate on, the mechanistic basis of metabolic scaling, relatively little attention has been paid to metabolic scaling in clonal animals with modular construction, such as colonial cnidarians, bryozoans, and colonial ascidians. Unlike unitary animals, modular animals are structural individuals subdivided into repeated morphological units, or modules, each able to acquire, process, and share resources. A modular design allows flexibility in organism size and shape with consequences for metabolic scaling. Furthermore, with careful consideration of the biology of modular animals, the size and shape of individual colonies can be experimentally manipulated to test competing theories pertaining to metabolic scaling. Here, we review metabolic scaling in modular animals and find that a wide range of scaling exponents, rather than a single value, has been reported for a variety of modular animals. We identify factors influencing variation in intraspecific scaling in this group that relate to the general observation that not all modules within a colony are identical. We highlight current gaps in our understanding of metabolic scaling in modular animals, and suggest future research directions, such as manipulating metabolic states and comparisons among species that differ in extent of module integration.  相似文献   

6.
7.
In order to understand fully the generally high level of encephalization observed in living primates, we must determine why early primates exhibited moderately large relative brain sizes compared to their early Tertiary contemporaries. The relatively high degree of encephalization in early primates may be related at least in part to the fact that they were highly unusualamong mammals in combining a small body size with a strongly precocial reporductive strategy. Other small, precocial mammals also exhibit moderately high levels of encephalization; but primates appear to have been truly uniquein being the only such small-sized and highly precocial group to give rise to extensive radiations of larger descendants. This is a key element in understanding primate brain evolution, because the initial “head start” of the early primates was translated up to larger sizes in descendants. The possible relationships among encephalization, precociality, small size, and arboreality are discussed, particularly in light of recent debates concerning the validity of the superorder Archonta. This work emphasizes that we need to consider relative brain size as but one element in a complex synergistic network of morphological and life-history features.  相似文献   

8.
Adult static intraspecific allometry of tooth size was evaluated in a sample of 66 Otolemur crassicaudatus (34 male, 32 female). Tooth areas were calculated from mesiodistal and buccolingual measurements of canines and postcanine teeth of both arcades and were scaled to four viscerocranial measurements: bimaxillary width; maxillo-alveolar length; mandibular length and bigonial width. Individual tooth crown areas were also scaled to total skull length, body length and body weight. From the log-transformed analyses it is concluded that postcanine tooth size was unrelated to body length or weight, and poorly correlated to skull length or jaw size. Although viscerocranial size appears to be independent of body size, these measures are well correlated to skull length. It is shown that the longer the skull, the shorter and narrower the maxilla, and the longer and broader the mandible. Canines are shown to scale negatively allometric to skull length, hence, large animals will have relatively small canines.  相似文献   

9.
This study presents a molecular phylogeny of the Saguinus genus, based on the analysis of the DNA sequences of five nuclear loci with Alu insertions in 10 species. The concatenated alignment produced a polytomic arrangement with four main groups, although only two clades-the Amazonian (S. midas, S. niger, and S. bicolor) and the Colombian (S. leucopus and S. oedipus) tamarins-were statistically significant. The emergence of the midas-bicolor clade was estimated at about 5 million years ago (mya), and that of the Colombian clade, at 4.6 mya. The phylogenetic relationships among the mustached tamarins (S. mystax, S. imperator, and S. labiatus) remained unresolved, as did the internal arrangement of the midas group. The lack of a clear consensus on the phylogeny of this group may be related to rapid bursts of evolutionary change within the context of a highly dynamic environment, which may be difficult to resolve using the available quantitative approaches. On the other hand, the discrepancies between mtDNA and nDNA in resolving phylogenies strongly indicate the role of reticulated evolution in the evolutionary history of this group. We hope that the advance of whole genome sequencing technology and increasing information on nuclear markers and SNPs, coupled with a better understanding of the geological phenomena that took place in western Amazonia over the past 20 million years, will shed further light on the phylogenetic history of these New World primates.  相似文献   

10.
A series of twenty-three skeletal variables are tested for their utility as estimators of body size, measured as partial skeletal weight, over 286 Old World anthropoids. Several variables proved to be consistently accurate in this for the present sample: bizygomatic breadth, bicondylar femoral width, skull length, orbital width, basioninion, femoral circumference and vertebral area. The only reasonably acceptable mandibular measurement was mandibular breadth. Other variables that have been used as size estimators in previous studies proved to be less accurate.  相似文献   

11.
12.
Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects—larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed.  相似文献   

13.
Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth   总被引:16,自引:0,他引:16  
We adopted previous N : P stoichiometric models for zooplankton relative growth to predict the relative growth rates of the leaves μ L of vascular plants assuming that annual leaf growth in dry mass is dictated by how leaf nitrogen N L is allocated to leaf proteins and how leaf phosphorus P L is allocated to rRNA. This model is simplified provided that N L scales as some power function of P L across the leaves of different species. This approach successfully predicted the μ L of 131 species of vascular plants based on the observation that, across these species, N L scaled, on average, as the 3/4 power of P L, i.e. N L ∝  P     . When juxtaposed with prior allometric theory and observations, our findings suggest that a transformation in N : P stoichiometry occurs when the plant body undergoes a transition from primary to secondary growth.  相似文献   

14.
From finding food to choosing mates, animals must make intertemporal choices that involve fitness benefits available at different times. Species vary dramatically in their willingness to wait for delayed rewards. Why does this variation across species exist? An adaptive approach to intertemporal choice suggests that time preferences should reflect the temporal problems faced in a species''s environment. Here, I use phylogenetic regression to test whether allometric factors relating to body size, relative brain size and social group size predict how long 13 primate species will wait in laboratory intertemporal choice tasks. Controlling for phylogeny, a composite allometric factor that includes body mass, absolute brain size, lifespan and home range size predicted waiting times, but relative brain size and social group size did not. These findings support the notion that selective pressures have sculpted intertemporal choices to solve adaptive problems faced by animals. Collecting these types of data across a large number of species can provide key insights into the evolution of decision making and cognition.  相似文献   

15.
The significance of a gradient in enamel thickness along the human permanent molar row has been debated in the literature. Some attribute increased enamel thickness from first to third molars to greater bite force during chewing. Others argue that thicker third molar enamel relates to a smaller crown size facilitated by a reduced dentin component. Thus, differences in morphology, not function, explains enamel thickness. This study draws on these different interpretive models to assess enamel thickness along the entire human deciduous tooth row. Average enamel thickness (AET), the area and proportion of crown enamel and dentin, and a crown size proxy are calculated for incisors, canines, and molars. Allometric scaling relationships are assessed within each tooth class, and then comparisons are undertaken along the row. Generally, AET was correlated with crown size and scaled with isometry, except for second molars which scaled with positive allometry. Mean AET increased along the row and was greater on molars, where bite forces are reported to be higher. Second molars combined the largest crown size with the thickest enamel and the smallest proportion of dentin, which is consistent with a reduction in the potential for cusp fracture under high bite forces. Resistance to wear may also account for some enamel thickness variation between tooth classes. Dental reduction did not explain the trend in AET from central to lateral incisors, or from first to second molars. The gradient in AET along the deciduous tooth row is partly consistent with a functional interpretation of enamel thickness. Am J Phys Anthropol 151:518–525, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Objective: Multiple meaningful ecological characterizations of a species revolve around body mass. Because body mass cannot be directly measured in extinct taxa, reliable body mass predictors are needed. Many published body mass prediction equations rely on dental dimensions, but certain skeletal dimensions may have a more direct and consistent relationship with body mass. We seek to evaluate the reliability of prediction equations for inferring euarchontan body mass based on measurements of the articular facet areas of the astragalus and calcaneus. Methods: Surface areas of five astragalar facets (n = 217 specimens) and two calcaneal facets (n = 163) were measured. Separate ordinary least squares and multiple regression equations are presented for different levels of taxonomic inclusivity, and the reliability of each equation is evaluated with the coefficient of determination, standard error of the estimate, mean prediction error, and the prediction sum of squares statistic. We compare prediction errors to published prediction equations that utilize dental and/or tarsal measures. Finally, we examine the effects of taxonomically specific regressions and apply our equations to a diverse set of non‐primates. Results: Our results reveal that predictions based on facet areas are more reliable than most linear dental or tarsal predictors. Multivariate approaches are often better than univariate methods, but require more information (making them less useful for fragmentary fossils). While some taxonomically specific regressions improve predictive ability, this is not true for all primate groups. Conclusions: Among individual facets, the ectal and fibular facets of the astragalus and the calcaneal cuboid facet are the best body mass predictors. Since these facets have primarily concave curvature and scale with positive allometry relative to body mass, it appears that candidate skeletal proxies for body mass can be identified based on their curvature and scaling coefficients. Am J Phys Anthropol 157:472–506, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Biomechanical scaling of the hominoid mandibular symphysis   总被引:4,自引:0,他引:4  
Experimental investigation of mandibular bone strain in cercopithecine primates has established that the mandible is bent in the transverse plane during the power stroke of mastication. Additional comparative work also supports the assumption that the morphology of the mandibular symphysis is functionally linked to the biomechanics of lateral transverse bending, or "wishboning" of the mandibular corpus. There are currently no experimental data to verify that lateral transverse bending constitutes an important loading regime among hominoid primates. There are, however, allometric models from cercopithecoid primates that allow prediction of scaling patterns in hominoid mandibular dimensions that would be consistent with a mechanical environment that includes wishboning as a significant component. This study uses computed tomography (CT) scans to visualize cortical bone distribution in the anterior corpus of a sample of four genera of extant hominoids. From the cortical bone contours, area properties of the mandibular symphysis are calculated, and these variables are subjected to an allometric analysis to detect whether scaling of jaw dimensions are consistent with a wishboning loading regime. Scaling of the hominoid symphysis recalls patterns observed in cercopithecoid monkeys, which lends indirect support for the hypothesis that wishboning is an integral part of the masticatory loading environment in living apes. Inclination of the symphysis, rather than changes in cross-sectional shape or development of the superior transverse torus, represents a morphological solution for minimizing the potentially harmful effects of wishboning in the jaws of these primates.  相似文献   

18.
Recent advances in allometric theory have proposed a novel quantitative framework by which to view the evolution of plant form and function. This general theory has placed strong emphasis on the importance of long‐distance transport in shaping the evolution of many attributes of plant form and function. Specifically, it is hypothesized that with the evolutionary increase in plant size natural selection has also resulted in vascular networks that minimize scaling of total hydrodynamic resistance associated with increasing transport distances. Herein the central features of this theory are reviewed and a broad sampling of supporting but yet preliminary empirical data are analysed. In particular, subtle attributes of the scaling of tracheid and vessel anatomy are hypothesized to be crucial for the evolution of increased plant size. Furthermore, the importance of minimizing hydrodynamic resistance associated with increased transport distances is also hypothesized to be reflected in an isometric scaling relationship between stem mass, MS and root mass, MR(i.e. MSMR). Preliminary data from multiple extant and fossil plant taxa provide tantalizing evidence supporting the predicted relationships. Together, these results suggest that selection for the minimization of the scaling of hydrodynamic resistance within plant vascular networks has in turn allowed for the enormous diversification in vascular plant size.  相似文献   

19.
To address the effects of an evolutionary increase in body size on long bone skeletal allometry, scaling patterns relating body mass, bone length, limb length, midshaft diameters, and cross-sectional properties of the humerus and femur were analyzed for four species of scansorial mustelids. Humeral and, to a lesser extent, femoral allometry is consistent with expectations of elastic similarity: bone and limb length scale with negative allometry on body mass while bone robusticity (cross-sectional parameters against bone length) scales with strong positive allometry. Differences between fore- and hindlimb scaling patterns, however, are observed, with size-dependent increases in forelimb length and humeral strength and robusticity exceeding those of the hindlimb and femur. It is hypothesized that this greater fore- than hindlimb lengthening results in postural modifications that serve to straighten the hindlimb of larger bodied scansorial mustelids relative to smaller mustelids. Straightening of hindlimb joints would more precisely align the long axis of the femur with peak (vertical) ground reaction forces, thereby accounting for the reduction in relative bending stresses acting on the femur compared to the humerus. J. Morphol. 235:121–134, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
There is a well-established allometric relationship between brain and body mass in mammals. Deviation of relatively increased brain size from this pattern appears to coincide with enhanced cognitive abilities. To examine whether there is a phylogenetic structure to such episodes of changes in encephalization across mammals, we used phylogenetic techniques to analyse brain mass, body mass and encephalization quotient (EQ) among 630 extant mammalian species. Among all mammals, anthropoid primates and odontocete cetaceans have significantly greater variance in EQ, suggesting that evolutionary constraints that result in a strict correlation between brain and body mass have independently become relaxed. Moreover, ancestral state reconstructions of absolute brain mass, body mass and EQ revealed patterns of increase and decrease in EQ within anthropoid primates and cetaceans. We propose both neutral drift and selective factors may have played a role in the evolution of brain-body allometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号