首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holocene sediments of three closed Danish lake basins (Solsø, Skånsø, Kragsø) were used for the inference of post-glacial vegetational dynamics in former heathland areas in northern West Jutland, Denmark. The sites were selected to represent the major geomorphological units of West Jutland. The Holocene history of each lake basin was investigated by mapping of sediment distribution, analysis of loss-on-ignition, coarse inorganic matter, humus content, mineral magnetics, δ13C, pollen and selected other microfossils. These techniques were supplemented by plant macrofossil analysis at one site. Holocene terrestrial vegetational development was inferred at each site from analyses of pollen and microscopical charred particles. Chronologies were provided by numerous 14C dates. Stratigraphies of wet ground and terrestrial pollen and spore types were zooned by stratigraphically constrained cluster analysis. Based on the resultant site pollen asemblage zones (site PAZ), regional PAZ were proposed. Using modern analogues, Holocene floristic richness was estimated from pollen richness in the microfossil assemblages. The results support the hypothesis that disturbance is one of the most important mechanisms behind the maintenance of floristic richness. In particular, the response of estimated floristic richness to the intensity of vegetational fires followed the predictions of the Intermediate Disturbance Hypothesis. A period of elevated palynological richness and inferred vegetational disturbance was identified at all sites between 6000 and 5200 BC (calendar years). Using correspondence analysis (CA), the major gradient in the terrestrial pollen sequences was identified as a light-shade gradient, and CA first axis sample scores were used as a supplement to standard AP/NAP pollen ratios as an indicator of the shade-tolerance/light-demand of Holocene terrestrial plant communities. In spite of different vegetational developments since 4000 BC, the timing of major changes towards more light-demanding vegetation types were broadly synchronous at the three sites. Using chord distance as a dissimilarity index, rates of palynological change suggest that the interval between 8000 and 7500 BC (calendar years) was the period of most rapid vegetational change during the Holocene, both in terrestrial as well as lacustrine ecosystems. While climatic forcing of the rapid events around 8000 BC is hypothesised, the synchronous timing of relatively rapid inferred change in lake and terrestrial vegetation around AD 600 may reflect changes in climate as well as in land-use. Reducdancy analysis was used to develop a model between fire intensity (inferred from microscopical charred particles) and vegetational response, as reflected by pollen assemblages. Formulated at one site and tested at the two other sites, the model explains regional Calluna-heathland expansions as a result of vegetational burning. Similarly, declines in heathland cover are explained by lack of maintenance by fire. Regional vegetational development in northern West Jutland is reconstructed and special consideration is given to heathland history. The Holocene heathland development is interpreted as resulting from its importance for grazing. It is hypothesized that on poor soils, Calluna-dominated heathland was a better grazing resource than grass-dominated pasture, due to the winter-grazing offered by Calluna and the low palatibility of dominant grasses on poor soils. This hypothesis is relevant for the explanation of the variation in timing of heathland expansions on the different soil types represented by the study sites.  相似文献   

2.
A 17.81 m sediment core from Lake Naleng, a freshwater lake in the south-eastern part of the Tibetan Plateau was examined for its non-pollen palynomorph (NPP) composition. The frequencies of 15 NPPs and three aquatic pollen types were determined in 160 samples. Since the origin of several NPP types is still unknown, multivariate analysis, supported by findings from the corresponding fossil pollen flora, was carried out to extract information about their ecological environments. The analysis allowed a classification of all microfossils in four groups of environmental response, which provided an approach to tracing lake history and palaeoclimatic changes in the area since the Late Glacial (since 17,700 cal years b.p.). Unstable lake conditions and a low organic productivity were reconstructed for the Late Glacial before 14,600 cal years b.p. with high inputs of terrestrial material. Climate conditions became wetter during the Bølling/Allerød interval indicated by high productivity in the lake. After a short climate deterioration (12,500–11,500 cal years b.p.), stable lake conditions were inferred from the record. During the late Holocene (since 2,700 cal years b.p.) changes in the NPP composition might be related to human impact, the latter being inferred from the pollen data through the presence of grazing indicators.  相似文献   

3.
Questions: Does stand age influence the direction and rate of post‐fire successional dynamics in coastal Calluna heaths and can old degraded heath vegetation be restored through reintroduction of fire? Location: Coastal heaths in the Tarva archipelago, central Norway. Methods: We investigated revegetation dynamics after experimental fires set in young (8 years since last fire) and old (>50 years since last fire) grazed heath stands. A repeated measures design was used, with floristic data recorded in permanent plots in the post‐fire successions (n=12) over a 7‐year period. The data were analysed using multivariate ordination techniques (PCA, RDA and PRC) and mixed effects models. Results: The age of Calluna stands strongly influenced post‐fire succession, different trends due to age explained 10.4% of variation in floristic data. Young heath showed faster succession towards pre‐fire community composition than old heath, and this could partially be explained by succession‐related factors: young heath had lower cover of mosses and lichens in the pre‐burned vegetation, and lower cover of litter early in succession. Young heath had a less pronounced overall community response to fire than old heath. Vegetative regeneration of C. vulgaris was absent in both old and young heath, but Calluna still re‐established as the dominant species within 5–7 years in both young and old stands. Regeneration dynamics were also affected by habitat conditions, different trends due to habitat explained 6% of variation. Conclusions: Our study demonstrates that old stands do develop characteristic heathland vegetation and structure after fire, and while potential invasives into the system such as trees and rhizomatous species are present, they do not impair Calluna regeneration or vegetation development towards the target heathland community composition and structure. Further, as our young stands are only in their second fire rotation after restoration, we suggest that characteristic dynamics of managed heathlands can re‐establish relatively rapidly, even in severely degenerated sites (>50 years since last fire). Site‐specific factors also need to be considered. We conclude that there is restoration potential in old heaths, despite slow dynamics in the first rotation.  相似文献   

4.
Aim We analysed lake‐sediment pollen records from eight sites in southern New England to address: (1) regional variation in ecological responses to post‐glacial climatic changes, (2) landscape‐scale vegetational heterogeneity at different times in the past, and (3) environmental and ecological controls on spatial patterns of vegetation. Location The eight study sites are located in southern New England in the states of Massachusetts and Connecticut. The sites span a climatic and vegetational gradient from the lowland areas of eastern Massachusetts and Connecticut to the uplands of north‐central and western Massachusetts. Tsuga canadensis and Fagus grandifolia are abundant in the upland area, while Quercus, Carya and Pinus species have higher abundances in the lowlands. Methods We collected sediment cores from three lakes in eastern and north‐central Massachusetts (Berry East, Blood and Little Royalston Ponds). Pollen records from those sites were compared with previously published pollen data from five other sites. Multivariate data analysis (non‐metric multi‐dimensional scaling) was used to compare the pollen spectra of these sites through time. Results Our analyses revealed a sequence of vegetational responses to climate changes occurring across southern New England during the past 14,000 calibrated radiocarbon years before present (cal yr bp ). Pollen assemblages at all sites were dominated by Picea and Pinus banksiana between 14,000 and 11,500 cal yr bp ; by Pinus strobus from 11,500 to 10,500 cal yr bp ; and by P. strobus and Tsuga between 10,500 and 9500 cal yr bp . At 9500–8000 cal yr bp , however, vegetation composition began to differentiate between lowland and upland sites. Lowland sites had higher percentages of Quercus pollen, whereas Tsuga abundance was higher at the upland sites. This spatial heterogeneity strengthened between 8000 and 5500 cal yr bp , when Fagus became abundant in the uplands and Quercus pollen percentages increased further in the lowland records. The differentiation of upland and lowland vegetation zones remained strong during the mid‐Holocene Tsuga decline (5500–3500 cal yr bp ), but the pattern weakened during the late‐Holocene (3500–300 cal yr bp ) and European‐settlement intervals. Within‐group similarity declined in response to the uneven late‐Holocene expansion of Castanea, while between‐group similarity increased due to homogenization of the regional vegetation by forest clearance and ongoing disturbances. Main conclusions The regional gradient of vegetation composition across southern New England was first established between 9500 and 8000 cal yr bp . The spatial heterogeneity of the vegetation may have arisen at that time in response to the development or strengthening of the regional climatic gradient. Alternatively, the differentiation of upland and lowland vegetation types may have occurred as the climate ameliorated and an increasing number of species arrived in the region, arranging themselves in progressively more complex vegetation patterns across relatively stationary environmental gradients. The emergence of a regional vegetational gradient in southern New England may be a manifestation of the increasing number of species and more finely divided resource gradient.  相似文献   

5.
The associations between floristic and palynological richness and landscape structure were studied based on modern pollen?Cvegetation data from a patchy cultural landscape in southern Estonia (northern temperate vegetation zone). Nine study sites (small lakes and their surrounding vegetation) represent land cover gradient from closed forest to semi-open vegetation. Floristic richness (number of species) and floristic richness of pollen types (number of pollen-equivalent taxa) were used to describe the vegetation within the radius of 250?m from the pollen sampling sites. Palynological richness was calculated to describe the modern pollen samples diversity. Landscape structure was estimated on the basis of landscape openness and three landscape diversity measures: richness of community patches, Simpson evenness of community patches and Simpson diversity of community patches. To study the effect of the spatial scale of landscapes on the vegetation?Clandscape and pollen?Clandscape associations, landscape structure was estimated within eight radii (250?C2,000?m) around each lake. The results showed that landscape openness was the most important determinant of both floristic richness and palynological richness in southern Estonia and that landscape diversity estimated by Simpson diversity index was also significantly associated with the richness estimates. Floristic and palynological richness were significantly positively correlated with landscape structure within the radii greater than 1,000?m from the pollen sampling sites, which is similar to the estimated Relevant Source Area of Pollen in southern Estonia. We conclude that within one floristic or climatic region, palynological richness gives reliable estimates about the variation in floristic richness and landscape structure; however, caution must be taken when comparing pollen-inferred vegetation diversities from different regions or when interpreting fossil pollen records from times with highly different vegetation associations.  相似文献   

6.
Late Holocene vegetation, climate and fire dynamics of mountain forest and paramo ecosystems, as well as human impact, are presented from the upper Rio San Francisco valley, southeastern Ecuadorian Andes. Palaeoenvironmental changes, inferred from three soil monoliths, spanning an altitudinal gradient between 1,990 and 3,200 m and the high resolution multi-proxy sediment record from Laguna Zurita (2,590 m), were investigated by pollen, spore and charcoal analyses, in combination with XRF- and magnetic susceptibility-scanning. Three of the four pollen records show a marked change in the floristic composition between ca. 900 and 350 cal b.p. (interpolated age). Past fires have strongly influenced the floristic composition of the mountain rainforest ecosystem. Frequent fires, together with the relatively high occurrence of grasses and some Zea mays plantations document past human activities in the upper Rio San Francisco valley. A large number of areas of probably ancient Z. mays cultivation in the upper Rio San Francisco valley has been identified, using GIS-based calculation. High occurrences of Cyperaceae and Isoetes indicate the development of marshy lake shores in response to a lower lake level at Laguna Zurita before ca. 700 cal b.p. The decrease of Isoetes and Cyperaceae after ca. 1200 cal b.p. reflects a lake level rise, due to increasing moisture and/or human activities.  相似文献   

7.
Holocene environmental and climatic changes are reconstructed using analyses of biological proxies in lake sediments from Vuolep Njakajaure, a lake located near the altitudinal treeline in northern Sweden (68°20′ N, 18°47′ E). We analysed biological proxy indicators from both aquatic and terrestrial ecosystems, including diatoms, pollen and chironomid head capsules, in order to reconstruct regional Holocene climate and the development of the lake and its catchment. During the early Holocene and after 2500 cal b.p., Fragilaria taxa dominated the diatom assemblages, whereas planktonic Cyclotella taxa prevailed during the major part of the Holocene (7800–2300 cal b.p.), indicating the importance of the pelagic habitat for diatom assemblage composition. The planktonic diatoms appeared at the same time as Alnus became established in the catchment, probably altering nutrient availability and catchment stability. The pollen record is dominated by mountain birch (Betula pubescens ssp. tortuosa) pollen throughout the Holocene, but high percentage abundances of Scots pine (Pinus sylvestris) pollen suggest the presence of a mixed pine-birch forest during the mid-Holocene (6800–2300 cal b.p.). Head capsules of Tanytarsini and Psectrocladius dominated the chironomid assemblage composition throughout the Holocene, in combination with Corynocera ambigua after 2300 cal b.p. A quantitative, diatom-based reconstruction of mean July air temperature indicated a relatively cold temperature during the early Holocene (9000–8000 cal b.p.) and after ca. 2300 cal b.p., whereas the mid-Holocene period is characterised by stable and warm temperatures. The overall patterns of Holocene climate and environmental conditions are similarly described by all biological proxy-indicators, suggesting relatively warm conditions during the mid-Holocene (ca. 7800–2300 cal b.p.), with a subsequent colder climate after 2300 cal b.p. However, the onset and magnitude of the inferred changes differ slightly among the proxies, illustrating different responses to lake development phases, land-uplift, and climate forcing (e.g., insolation patterns) during the Holocene in northern Sweden.  相似文献   

8.
Numerous pollen records provide evidence for the widespread range expansion of Alnus throughout Alaska and adjacent Canada during the middle Holocene. Because Alnus can fix atmospheric N2, this vegetational change probably had a profound effect on N availability and cycling. To assess this effect, we analyzed a sediment core from Grandfather Lake in southwestern Alaska for a suite of geochemical indicators, including elemental composition, biogenic silica (BSi) content, and carbon (C) and nitrogen (N) isotopes of organic matter. These data, in conjunction with a pollen record from the same site, are used to infer biogeochemical processes associated with the mid-Holocene Alnus expansion. The increase in Alnus pollen percentages from 10% to 70% circa 8000-7000 BP (14C years before present) suggests the rapid spread of Alnus shrub thickets on mountain slopes and riparian zones in the Grandfather Lake region. Coincident with this vegetational change, the mean value of the sediment BSi content increases from 20.4 to 106.2 mg/g, reflecting increased diatom productivity within the lake as a result of Alnus N2 fixation in the watershed soils and the associated N flux to the lake. Elevated aquatic productivity at this time is also supported by increased percentages of organic C and N, decreased C:N ratios, and decreased values of δ 13C. Furthermore, the δ 15N values of sediments increase substantially with the establishment of Alnus shrub thickets, suggesting enhanced N availability and accelerated N cycling within the lake and its watershed. Superimposed on a general trend of soil acidification throughout the postglacial period, soil acidity probably increased as a result of the Alnus expansion, as can be inferred from decreasing ratios of authigenic base cations to allogenic silica (Si) and increasing ratios of authigenic aluminum (Al) to allogenic Si. The ultimate cause of these mid-Holocene ecosystem changes was an increase in effective moisture in the region. Received 21 July 2000; accepted 3 January 2001.  相似文献   

9.
Summary A sod-cutting and fertilization experiment was performed on a Calluna-dominated heathland in The Netherlands to determine appropriate management regimes for Calluna regeneration, and to further understand the nutrient responses of heathland species. Replicated permanent plots were analysed by multivariate techniques. Sod-cutting alone caused Calluna regeneration from its soil seed bank. A single fertilization at the start of the experiment caused initial vegetation differences which disappeared after a few years as the nutrients were lost from the system, except that one application of nitrogen enhanced the rate of Calluna regeneration. Repeated fertilization caused large differences in the vegetation: repeated nitrogen enhanced several bryophyte species while greatly inhibiting Calluna, repeated phosphate partly inhibited Calluna while greatly favouring several lichen species, and the most striking result of repeated calcium was also an increase in bryophytes, but the species were different from those favoured by nitrogen. Treatments which inhibited Calluna tended to increase species diversity because of the lessened Calluna dominance.  相似文献   

10.
Questions: How do species composition and abundance of soil seed bank and standing vegetation vary over the course of a post‐fire succession in northern heathlands? What is the role of seed banks – do they act as a refuge for early successional species or can they simply be seen as a spillover from the extant local vegetation? Location: Coastal Calluna heathlands, Western Norway. Methods: We analysed vegetation and seed bank along a 24‐year post‐fire chronosequence. Patterns in community composition, similarity and abundances were tested using multivariate analyses, Sørensen's index of similarity, vegetation cover (%) and seedling counts. Results: The total diversity of vegetation and seed bank were 60 and 54 vascular plant taxa, respectively, with 39 shared species, resulting in 68% similarity overall. Over 24 years, the heathland community progressed from open newly burned ground via species rich graminoid‐ and herb‐dominated vegetation to mature Calluna heath. Post‐fire succession was not reflected in the seed bank. The 10 most abundant species constituted 98% of the germinated seeds. The most abundant were Calluna vulgaris (49%; 12 018 seeds m?2) and Erica tetralix (34%; 8 414 seeds m?2). Calluna showed significantly higher germination the first 2 years following fire. Conclusions: Vegetation species richness, ranging from 23 to 46 species yr?1, showed a unimodal pattern over the post‐fire succession. In contrast, the seed bank species richness, ranging from 21 to 31 species yr?1, showed no trend. This suggests that the seed bank act as a refuge; providing a constant source of recruits for species that colonise newly burned areas. The traditional management regime has not depleted or destroyed the seed banks and continued management is needed to ensure sustainability of northern heathlands.  相似文献   

11.
Abstract. The results of pollen analysis and radiocarbon dating are presented from three northern Apennine sequences; Lago Padule in northern Tuscany and Lago Pratignano and Ospitale in the Emilia-Romagnan Apennines. This is the first detailed pollen stratigraphic information from sites in Emilia-Romagna and north Tuscany and extends eastwards the area from which information on vegetational history is available. The sequence from Lago Padule is one of the most complete Holocene records known from the northern Apennine region. Lago Pratignano has the deepest sequence of organic sediments (1544 cm) and the fastest rates of sediment accumulation (up to 28 cm per 100 years) providing the highest resolution record for the mid to late Holocene periods in the region. High rates of sedimentation have also occurred at Ospitale where organic sediments are 780 cm deep and began to form at approximately 5500 bp. The record from Lago Padule is compared with Holocene records from two nearby sites and a series of Regional Pollen Assemblage Zones is defined for the eastern area of the northern Apennines. The main features of vegetational change identified are: (i) a‘pioneer’phase of rapid forest development during the early Holocene followed by the establishment of an upper forest belt dominated by Abies, and a belt of mixed deciduous forest at lower altitudes; (ii) the appearance and rapid expansion of Fagus between approximately 5200 bp and 2900 bp forming a mixed Abies-Fagus association in the upper forest belt; and (iii) the overall reduction of forest cover, and dominance of Fagus in the arboreal vegetation from around 2900 bp. The scheme of Regional PAZs for the eastern area is used as a framework for the review of pollen stratigraphic information and radiocarbon dates from other sites in the northern Apennine region. Characteristics of pollen records which can be identified in sequences from across the region are identified and the chronology of similar changes in pollen stratigraphy is examined. The scheme of four regional PAZs for the Holocene period is shown to be valid for the entire northern Apennine region. The examination of a series of pollen records shows that Fagus appeared earlier in the western than the eastern part of the region during the mid Holocene and became dominant in the northern Apennine forests post 3000 bp. The impact of anthropogenic activity and climatic change on the spread and development of Fagus are discussed. The palynological evidence which is now available from the northern Apennines is compared with information for the region shown in the‘European pollen maps’of Huntley & Birks (1983). This study provides an updated review of the representation of different tree taxa in Holocene pollen records from the northern Apennines and illustrates the role of the northern Apennines as a refugium for trees during the Wurmian Lateglacial.  相似文献   

12.
Sediments from the small lake Ilsø situated in the Illerup/Alken Enge Valley were studied in order to investigate past landscape development at the time of a probably ritual human mass burial following battle during the Roman Iron Age (ad 1–400). A pollen record from Ilsø and a number of other records from Jutland were combined using the Landscape Reconstruction Algorithm to reconstruct local vegetation changes through the last 2,800 years. These methods were supplemented by studies of catchment-related geochemistry of the Ilsø lake sediments. The results show a marked reforestation event associated with a strong decrease in erosion levels at the very beginning of the first century ad, contemporaneous with the finds of human remains at Alken Enge. Comparison with a pollen record 10 km away and with those from other sites, reveals that this reforestation occurs unusually early and rapidly, and is an unparalleled development in a Danish context. We suggest that the major landscape changes at the beginning of the Roman Iron Age and forest cover for the next few centuries comprise a possible example of ritual control of local land-use.  相似文献   

13.
Fossil pollen as a record of past biodiversity   总被引:7,自引:0,他引:7  
Quaternary pollen records may contribute uniquely to the understanding of present plant diversity. Pollen assemblages can reflect diversity at community and landscape scales but the time resolution of most studies does not match that of modern ecological studies. Because of the complicating effects of differential pollen productivity and dispersal, pollen records do not directly reflect equitability aspects of vegetation diversity. Vegetation diversity indices other than S (the total number of taxa) are therefore not appropriate for pollen assemblages. As a measure of the species richness palynological richness is biased by the lack of taxonomic precision, by a possible interference on pollen dispersal from vegetation structure and by pollen representation. The nonlinear relationship between species richness and pollen-taxa richness may be used in attempts to estimate past floristic richness from fossil pollen assemblages. Using a hypothetical example the strong effect of cover shifts in the vegetation affecting taxa with different representation (Rrel) values on observed palynological richness is demonstrated. It is suggested that estimates of relative pollen productivity should be used to guide the pollen sum on which pollen-type richness is estimated by rarefaction techniques and this approach is illustrated using a paired site study of late Holocene diversity dynamics. The need for a modern training set relating pollen-type richness to species richness, pollen productivity and vegetation structure is emphasized.  相似文献   

14.
R. H. Marrs 《Plant Ecology》1986,66(2):109-115
In the Breckland heaths of East Anglia large patches of Calluna are often killed by adverse climatic conditions or insect attack. This paper studies one site, Cavenham Heath, where large areas of Calluna were killed between 1976–1979, and shows that older stands were most affected, and recovery was slowest compared to either younger stands, or stands with an uneven-aged structure. Moreover, where Calluna death was most severe, directional succession to birch woodland was accelerated. At this site, although Calluna regeneration has been previously assumed to be initiated by endogenous factors (i.e. by the life cycle of the Calluna), it is also clearly interrupted by exogenous factors. The implications of these results for heathland conservation are discussed, and it is suggested that intervention management by cutting and burning, to maintain large areas of Calluna in the building phase, may be the most appropriate long term strategy.This work was funded in part by the Nature Conservancy Council as part of its research programme into nature conservation. I thank Mr D. Malins and Mrs D. Reynolds for assistance in both the field and the laboratory, Ms S. Ide and Mr J. Pattin-gale for preparing the figures, and Professor C. H. Gimigham, Dr J. Miles and Dr I. C. Prentice for helpful comments on earlier drafts of this paper.  相似文献   

15.
The Late Glacial and early-Holocene vegetational history of a newly dated pollen and macrofossil diagram from Besbog, a cirque lake at 2250 m just above the forest limit in the Pirin Mountains of southwestern Bulgaria, is compared with a newly dated pollen diagram for the mire Shiroka Polyana at 1400 m in the conifer forest of the nearby Rhodope Mountains in order to investigate the chronology of major changes in the vegetation at different elevations. In the Lake Besbog record the non-arboreal pollen assemblage of the Late Glacial changed abruptly to that of Betula, Quercus and other deciduous types. The date for this change is about 11.6 ka cal b.p. The Quercus assemblage may be composed of pollen blown from intermediate elevations, to which deciduous forest had expanded because of higher summer temperatures related to high summer insolation. At Shiroka Polyana (1400 m) in the modern conifer belt, a similar change did not occur until about 8.8 ka cal b.p. The persistence of the dry steppe or steppe forest in the early Holocene at this lower site can also be attributed to high summer insolation. Thus as atmospheric temperature increased at the end of the Late Glacial, deciduous forests expanded first at intermediate elevations in the Pirin Mountains and only later in the Rhodope Mountains at lower elevations as summer insolation decreased.  相似文献   

16.
The rarefaction technique is applied to two Holocene pollen sequences (covering the last 12,000 calendar years) from two lakes in southern Sweden. One represents an open agricultural landscape, the other a partly wooded and less cultivated landscape. The inferred palynological richness is interpreted as an approximate measure of floristic diversity at the landscape scale. The overall trend is an increased diversity from the mid-Holocene to the Modern period, which is linked to a parallel rise in human impact. The pattern is similar for the two sites with peaks corresponding to archaeological periods characterised by deforestation and expanding settlement and agriculture. The highest diversity was reached during the Medieval period, about a.d. 1,000–1,400. Declining diversity during the last 200 years characterises the agrarian landscape. These results confirm, for southern Scandinavia, the “intermediate disturbance” hypothesis for biodiversity at the landscape scale and on millennial to century time scales. They have implications for landscape management in modern nature conservation that has the purpose of maintaining and promoting biodiversity.  相似文献   

17.
Forest succession was investigated by pollen analysis of two mor-humus sections and of peat from a 3 m-diameter hollow under mixed conifer-hardwood forest in north-central Massachusetts, USA. The humus profiles recorded a major forest perturbation caused by the removal of Castanea dentata by the chestnut blight (1910–1912), and the peat from the hollow extended the record beyond the time of colonial settlement (1733). Fagus grandifolia was a forest dominant before 1733 but declined abruptly upon settlement. Castanea, a late Holocene immigrant to the area, rapidly increased its pollen representation after settlement until the epidemic of the chestnut blight. Forest succession following the loss of Castanea involved the successive rise to dominance of Betula, Quercus, Acer rubrum, and Tsuga canadensis. These vegetational changes conform to observations made during studies of forest-stand composition by other workers. Allogenic factors such as logging, disease, and wind have initiated major compositional change, which has been modified by autogenic successional processes such as the gradual rise to dominance of Tsuga canadensis around one of the humus sections. The two humus sites resolve fine-scale pattern in former vegetation such as differences in the distribution of Pinus strobus and Castanea over 200 m, the distance between the mor-humus sites. These within-forest sites permit investigations of fine-scale vegetational patterns and processes that are of interest to forest ecologists.  相似文献   

18.
This review paper synthesizes the recent published palaeoecological results obtained in Atlantic Equatorial Africa (ECOFIT program) on the history of forest ecosystems and inferred climate changes during the past 4000 years. Evidence are mainly provided by pollen analysis carried out at nine sites from Congo, Cameroon and Ghana, locally supported by macroflora remains, phytoliths, diatoms, δ13C and mineralogical data. At all the sites, except Lake Bosumtwi (Ghana), following a large expansion of rain and mesophilous forests until 3000 years BP , a major change is registered, affecting floristic composition, structure and geographical distribution. According to the hydrological sensitivity of the different sites, local openings of the forests with development of heliophilous formations and/or isolated enclosed savannas are observed at the most humid sites; complete disappearance of forested formations at the driest. The agreement between pollen records, hydrological and hydrobiological data definitely demonstrates that an arid event has been the primary driving factor of this change and is responsable for the main features of the modern landscapes in Atlantic Equatorial Africa. Moreover, the most recent palaeoecological data obtained in Congo (Lake Sinnda), indicate that this Late Holocene increasing aridity was of longer duration, from 4000 to 1300 years BP , and more progressive than previously inferred. A new expansion of forests is locally detected c. 900–600 BP despite increased human impact.  相似文献   

19.
Pollen data from the Czech Republic was used to detect the early Holocene impact of hunter-gatherers on vegetation based on a selection of 19 early Holocene pollen profiles, complemented with archaeological information regarding the intensity of local and regional Mesolithic human habitation. Archaeological evidence was assigned to simple categories reflecting the intensity of habitation and distance from pollen sites. Multivariate methods (PCA and RDA) were used to determine relationships between sites and possible anthropogenic pollen indicators and to test how these indicators relate to the archaeological evidence. In several profiles the pollen signal was influenced by local Mesolithic settlement. Specific pollen types (e.g. Calluna vulgaris, Plantago lanceolata, Solanum and Pteridium aquilinum) were found to be significantly correlated with human activity. The role of settlement proximity to the investigation site, the statistical significance of pollen indicators of human activity, as well as the early occurrence of Corylus avellana and its possible anthropogenic dispersal, are discussed.  相似文献   

20.
The Siskiyou Mountains of northwestern California and southwestern Oregon are a floristic hotspot, and the high diversity of conifers there likely results from a combination of geological, ecological, climatological and historical factors. To evaluate how past climate variability has influenced the composition, structure and fire regime of the Siskiyou forests, pollen, charcoal, and lithological evidence was examined from two lakes along a moisture gradient to reconstruct the vegetation, fire and climate history. The late-glacial period was characterized by subalpine parkland and infrequent fire at both sites. During the late-glacial/Early Holocene transition period, subalpine parkland was replaced by a closed forest of Pinus, Cupressaceae, Abies and Pseudotsuga and more frequent fires a 1000 years earlier at the wetter site, and it is likely that reduced Pacific Ocean upwelling created warmer drier conditions at the coast. In the Early Holocene, Pinus, Cupressaceae were less abundant and fire less frequent at the coastal site during a period of increased coastal upwelling and fog production. In the Late Holocene, Abies, Pseudotsuga, Pinus, and Quercus vaccinifolia increased in the forest at both sites suggesting a widespread response to cooling. Fewer fires at the wetter site may account for the abundance of Picea breweriana within the last 1000 years. The comparison of the two records implies that large-scale controls in climate during the last 14,000 cal yr BP have resulted in major changes in vegetation and fire regime. Asynchrony in the ecosystem response of wetter and drier sites arises from small-scale spatial variations in effective moisture and temperature resulting from topographically-influenced microclimates and coastal-to-inland climate gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号