首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual dimorphism is ubiquitous in animals and can result from selection pressure on one or both sexes. Sexual selection has become the predominant explanation for the evolution of sexual dimorphism, with strong selection on size-related mating success in males being the most common situation. The cuckoos (family Cuculidae) provide an exceptional case in which both sexes of many species are freed from the burden of parental care but where coevolution between parasitic cuckoos and their hosts also results in intense selection. Here, we show that size and plumage differences between the sexes in parasitic cuckoos are more likely the result of coevolution than sexual selection. While both sexes changed in size as brood parasitism evolved, we find no evidence for selection on males to become larger. Rather, our analysis indicates stronger selection on parasitic females to become smaller, resulting in a shift from dimorphism with larger females in cuckoos with parental care to dimorphism with larger males in parasitic species. In addition, the evolution of brood parasitism was associated with more cryptic plumage in both sexes, but especially in females, a result that contrasts with the strong plumage dimorphism seen in some other parasitic birds. Examination of the three independent origins of brood parasitism suggests that different parasitic cuckoo lineages followed divergent evolutionary pathways to successful brood parasitism. These results argue for the powerful role of parasite-host coevolution in shaping cuckoo life histories in general and sexual dimorphism in particular.  相似文献   

2.
Most hypotheses attempting to explain the evolution of reversed sexual dimorphism (RSD) assume that size-related differences in foraging ability are of prime importance, but the studies on sex-specific differences in foraging behaviour remain scarce. We compare the foraging behaviour of males and females in a seabird species with a RSD by using several miniaturised activity and telemetry loggers. In red-footed boobies males are 5% smaller and 15% lighter than females, but have a longer tail than females. Both sexes spend similar time on the nest while incubating or brooding. When foraging at sea, males and females spend similar time foraging in oceanic waters, forage in similar areas, spend similar proportion of their foraging trip in flight, and feed on similar prey—flying fishes and flying squids—of similar size. However, compared to males, females range farther during incubation (85 km vs. 50 km), and furthermore feed mostly at the extremity of their foraging trip, whereas males actively forage throughout the trip. Males are much more active than females, landing and diving more often. During the study period, males lost mass, whereas females showed no significant changes. These results indicate that males and females of the red-footed boobies differ in several aspects in their foraging behaviour. Although some differences found in the study may be the direct result of the larger size of females, that is, the slightly higher speeds and deeper depths attained by females, others indicate clearly different foraging strategies between the sexes. The smaller size and longer tail of males confer them a higher agility, and could allow them to occupy a foraging niche different from that of females. The higher foraging effort of males related to its different foraging strategy is probably at the origin of the rapid mass loss of males during the breeding period. These results suggest that foraging differences are probably the reason for the differential breeding investment observed in boobies, and are likely to be involved in the evolution and maintenance of RSD.  相似文献   

3.
Sexual dimorphism in size is common in birds. Males are usually larger than females, although in some taxa reversed size dimorphism (RSD) predominates. Whilst direct dimorphism is attributed to sexual selection in males giving greater reproductive access to females, the evolutionary causes of RSD are still unclear. Four different hypotheses could explain the evolution of RSD in monogamous birds: (1) The ‘energy storing’ hypothesis suggests that larger females could accumulate more reserves at wintering or refuelling areas to enable an earlier start to egg laying. (2) According to the ‘incubation ability’ hypothesis, RSD has evolved because large females can incubate more efficiently than small ones. (3) The ‘parental role division’ hypothesis suggests that RSD in monogamous waders has evolved in species with parental role division and uniparental male care of the chicks. It is based on the assumption that small male size facilitates food acquisition in terrestrial habitats where chick rearing takes place and that larger females can accumulate more reserves for egg laying in coastal sites. (3) The ‘display agility’ hypothesis suggests that small males perform better in acrobatic displays presumably involved in mate choice and so RSD may have evolved due to female preference for agile males. I tested these hypotheses in monogamous waders using several comparative methods. Given the current knowledge of the phylogeny of this group, the evolutionary history of waders seems only compatible with the hypothesis that RSD has evolved as an adaptation for increasing display performance in males. In addition, the analysis of wing shape showed that males of species with acrobatic flight displays had wings with higher aspect ratio (wing span/2wing area) than non-acrobatic species, which probably increases flight manoeuvrability during acrobatic displays. In species with acrobatic displays males also had a higher aspect ratio than females although no sexual difference was found in non-acrobatic species. These results suggest that acrobatic flight displays could have produced changes in the morphology of some species and suggest the existence of selection favouring higher manoeuvrability in species with acrobatic flight displays. This supports the validity of the mechanisms proposed by the ‘display agility’ hypothesis to explain the evolution of RSD in waders.  相似文献   

4.
Sexual segregation in ungulates: a comparative test of three hypotheses   总被引:1,自引:0,他引:1  
In most social ungulate species, males are larger than females and the sexes live in separate groups outside the breeding season. It is important for our understanding of the evolution of sociality to find out why sexual segregation is so widespread not only in ungulates but also in other mammals. Sexual body size dimorphism was proposed as a central factor in the evolution of sexual segregation in ungulates. We tested three hypotheses put forward to explain sexual segregation: the predation-risk, the forage-selection, and the activity budget hypothesis. We included in our analyses ungulate species ranging from non-dimorphic to extremely dimorphic in body size. We observed oryx, zebra, bighorn sheep and ibex in the field and relied on literature data for 31 additional species. The predation-risk hypothesis predicts that females will use relatively predator-safe habitats, while males are predicted to use habitats with higher predation risk but better food quality. Out of 24 studies on different species of ungulates, females and their offspring chose poorer quality but safer habitat in only eight cases. The forage-selection hypothesis predicts that females would select habitat based on food quality, while males should prefer high forage biomass. In fact, females selected higher quality food in only six out of 18 studies where males and females segregated, in eight studies there was no difference in forage quality and in four studies males were in better quality habitat. The activity budget hypothesis predicts that with increasing dimorphism in body size males and females will increasingly differ in the time spent in different activities. Differences in activity budgets would make it difficult for males and females to stay in mixed-sex groups due to increased costs of synchrony to maintain group cohesion. The predictions of the activity budget hypothesis were confirmed in most cases (22 out of 23 studies). The heavier males were compared to females, the more time females spent foraging compared to males. The bigger the dimorphism in body mass, the more males spent time walking compared to females. Lactating females spent more time foraging than did non-lactating females or males. Whether species were mainly bulk or intermediate feeders did not affect sexual differences in time spent foraging. We conclude that sexual differences in activity budgets are most likely driving sexual segregation and that sexual differences in predation risk or forage selection are additive factors.  相似文献   

5.
Many hypotheses, either sex‐related or environment‐related, have been proposed to explain sexual size dimorphism in birds. Two populations of blue tits provide an interesting case study for testing these hypotheses because they live in contrasting environments in continental France and in Corsica and exhibit different degree of sexual size dimorphism. Contrary to several predictions, the insular population is less dimorphic than the continental one but neither the sexual selection hypothesis nor the niche variation hypothesis explain the observed patterns. In the mainland population it is advantageous for both sexes to be large, and males are larger than females. In Corsica, however, reproductive success was greater for pairs in which the male was relatively small, i.e. pairs in which sexual size dimorphism is reduced. The most likely explanation is that interpopulation differences in sexual size dimorphism are determined not by sex‐related factors, but by differences in sex‐specific reproductive roles and responses to environmental factors. Because of environmental stress on the island as a result of food shortage and high parasite infestations, the share of parents in caring for young favours small size in males so that a reduced sexual size dimorphism is not the target of selection but a by‐product of mechanisms that operate at the level of individual sexes.  相似文献   

6.
Giant petrels ( Macronectes spp.) are the most sexually dimorphic of all seabirds. We used satellite-tracking and mass change during incubation to investigate the influence of sexual size dimorphism, in terms of the intersexual food competition hypothesis, on foraging and fasting strategies of northern giant petrels at South Georgia. Females foraged at sea whereas males foraged mainly on the South Georgia coast, scavenging on seal and penguin carcasses. Foraging effort (flight speed, distance covered, duration of foraging trips) was greater for females than for males. In contrast, foraging efficiency (proportionate daily mass gain while foraging) was significantly greater for males than for females. Females were significantly closer to the desertion mass threshold than males and could not compensate for the mass loss during the incubation fast while foraging, suggesting greater incubation costs for females than for males. Both sexes regulated the duration and food intake of foraging trips depending on the depletion of the body reserves. In males the total mass gain was best explained by mass at departure and body size. We suggest that sexual segregation of foraging strategies arose from size-related dominance at carcasses, promoting sexual size dimorphism. Our results indicate that sex-specific differences in fasting endurance, contest competition over food and flight metabolic rates are key elements in maintenance of sexual size dimorphism, segregating foraging strategies and presumably reducing competition between sexes.  相似文献   

7.
The evolution of greater male than female parental care remains poorly understood. In birds it is thought to be related to precocial chicks and small clutch size. This review shows, however, that such role reversal has also evolved in a family with altricial young and relatively large clutch size: coucals (Centropodidae, Cuculiformes). Males perform most nest building, incubation, and feeding of young. As predicted by sexual selection theory, coucals have also reversed sexual size dimorphism, females being larger than males in all 12 species for which size data are available. Most coucals that have been studied are monogamous, but the black coucal Centropus grillii appears to be polyandrous, and males perform almost all parental care, whereas females show more active advertisement behaviour. In this species, females are about 50% heavier than males. Polyandry in the black coucal seems to be associated with a shift to a habitat with seasonally rich food resources. Difficulties for female coucals of gathering enough resources for producing several clutches of relatively large eggs may favour mainly male parental care. Female sexual competition and resource storage, and male foraging economy, may explain why females are larger. Additional field studies are needed to test these hypotheses; the coucals are of great interest to sexual selection and mating systems theory.  相似文献   

8.
Reversed sexual size dimorphism (RSD, females larger than males) is commonly found in birds of prey. We used kestrels (Falco tinnunculus), breeding in western Finland in a temporally varying environment of 3-year vole cycles, to assess current hypotheses for the evolution and maintenance of RSD. Our 12-year data showed only weak correlations between parental size and breeding parameters (laying date, clutch size and the number of fledglings produced). The degree of RSD per se was unrelated to breeding success, contrary to the prediction of the female dominance hypothesis. Females with small males produced larger clutches in low-vole years, independently of laying date, which supports the small male (or its equivalent inter-sexual selection) hypothesis. Small females tended to have more fledglings, particularly in low-vole years, which is inconsistent with the hypotheses for an advantage of large female size (the starvation, intra-sexual selection, reproductive effort, and supplementary feeding hypotheses). As for males, smaller females may be more efficient hunters, the importance of which should be most pronounced under harsh breeding conditions. Our results suggest that the directional selection on a particular size in kestrels may be under contrasting selection pressures by the environment, and, at least in breeding females, the advantages of large size can actually be counterbalanced during harsh environmental conditions. Received: 7 May 1999 / Accepted: 20 January 2000  相似文献   

9.
Can sexual dimorphism evolve because of ecological differences between the sexes? Although several examples of this phenomenon are well known from studies on birds, the idea has often been dismissed as lacking general applicability. This dismissal does not stem from contradictory data so much as from the difficulties inherent in testing the hypothesis, and its apparent lack of parsimony, in comparison to the alternative explanation of sexual selection. The only unequivocal evidence for the evolution of sexual dimorphism through intersexual niche partitioning would be disproportionate dimorphism in trophic structures (e.g., mouthparts). This criterion offers a minimum estimate of the importance of ecological causes for dimorphism, because it may fail to identify most cases. A review of published literature reveals examples of sexually dimorphic trophic structures in most animal phyla. Many of these examples seem to be attributable to sexual selection, but others reflect adaptations for niche divergence between the sexes. For example, dwarf non-feeding males without functional mouthparts have evolved independently in many taxa. In other cases, males and females differ in trophic structures apparently because of differences in diets. Such divergence may often reflect specific nutritional requirements for reproduction in females, or extreme (sexually selected?) differences between males and females in habitats or body sizes. Ecological competition between the sexes may be responsible for intersexual niche divergence in some cases, but the independent evolution of foraging specializations by each sex may be of more general importance. If ecological causation for dimorphism can be demonstrated in so many cases, despite the inadequacies of the available criteria, the degree of sexual size dimorphism in many other animal species may well also have been influenced by ecological factors. Hence, it may be premature to dismiss this hypothesis, despite the difficulty of testing it.  相似文献   

10.
Although sexual selection is widely accepted as a primary functional cause of sexual size dimorphism in birds and mammals, results from some comparative studies have cast doubt on this conclusion. Chief among these contradictory results is the widespread association between body size and size dimorphism—large species tend to be more dimorphic than small species. This correlation is not directly predicted by the normal sexual selection scenario, and many hypotheses have been advanced to explain it. This paper reviews these hypotheses and evaluates them using data for the New World blackbirds (Icterinae). In this avian subfamily, (1) body size correlates with the intensity of sexual selection (as measured by mean harem size), and (2) size does not correlate with dimorphism if the effects of mating system are removed. Similar results are obtained when controlling for the confounding influence of phylogeny. Further, body size and mating system are associated with nesting dispersion. These results strongly argue that sexual dimorphism is a product of sexual selection in this subfamily, and suggest that either: (1) large body size itself, or the ecology of large species, promotes the development of coloniality and a polygynous mating system; or (2) polygyny and/or coloniality lead to the evolution of large size in both males and females. None of the other hypotheses examined predict an association between size and mating system, and all predict that size will correlate with dimorphism after the effects of mating system are removed. Thus, none of the other hypotheses seem applicable in this case. These results are compared to those obtained for other avian and mammalian taxa. Difficulties of analysis present in previous studies are discussed. I argue that it is inappropriate to assume that associations between a trait and body size or phylogeny are evidence of nonadaptive evolutionary “constraints.”  相似文献   

11.
Secondary sexual traits increase male fitness, but may be maladaptive in females, generating intralocus sexual conflict that is ameliorated through sexual dimorphism. Sexual selection on males may also lead some males to avoid expenditure on secondary sexual traits and achieve copulations using alternative reproductive tactics (ARTs). Secondary sexual traits can increase or decrease fitness in males, depending on which ART they employ, generating intralocus tactical conflict that can be ameliorated through male dimorphism. Due to the evolutionary forces acting against intralocus sexual and tactical conflicts, male dimorphism could coevolve with sexual dimorphism, a hypothesis that we tested by investigating these dimorphisms across 48 harvestman species. Using three independently derived phylogenies, we consistently found that the evolution of sexual dimorphism was correlated with that of male dimorphism, and suggest that the major force behind this relationship is the similarity between selection against intralocus sexual conflict and selection against intralocus tactical conflict. We also found that transitions in male dimorphism were more likely in the presence of sexual dimorphism, indicating that if a sexually selected trait arises on an autosome and is expressed in both sexes, its suppression in females probably evolves earlier than its suppression in small males that adopt ARTs.  相似文献   

12.
Variation in guenon skulls (II): sexual dimorphism   总被引:2,自引:1,他引:1  
Patterns of size and shape sexual dimorphism in adult guenons were examined using a large sample of skulls from almost all living species. Within species, sexual dimorphism in skull shape follows the direction of size-related shape variation of adults, is proportional to differences in size, and tends to be larger in large-bodied species. Interspecific divergence among shape trajectories, which explain within species sex differences, are small (i.e., trajectories of most species are nearly parallel). Thus, changes in relative proportions of skull regions that account for the distinctive shape of females and males are relatively conserved across species, and their magnitude largely depends on differences in size between sexes. A conservative pattern of size-related sexual dimorphism and a model of interspecific divergence in shape which strongly reflects size differences suggest a major role of size and size-related shape variation in the guenon radiation. It is possible that in the guenons, as in the neotropical primates (with whom they have obvious parallels), size has helped to determine morphological change along lines of least evolutionary resistance, influencing sexual dimorphism. In Miopithecus and Erythrocebus, the smallest and largest guenon genera, it is likely that the interaction of ecology and size contributes significantly to patterns of sexual dimorphism. The results of this study thus emphasise the need to consider allometry and size alongside ecology and behaviour when examining primate sexual dimorphism.  相似文献   

13.
Reversed sexual dimorphism (RSD) may be related to different roles in breeding investment and/or foraging, but little information is available on foraging ecology. We studied the foraging behaviour and parental investment by male and female masked boobies, a species with RSD, by combining studies of foraging ecology using miniaturised activity and GPS data loggers of nest attendance, with an experimental study where flight costs were increased. Males attended the chick more often than females, but females provided more food to the chick than males. Males and females foraged during similar periods of the day, had similar prey types and sizes, diving depths, durations of foraging trips, foraging zones and ranges. Females spent a smaller proportion of the foraging trip sitting on the water and had higher diving rate than males, suggesting higher foraging effort by females. In females, trip duration correlated with mass at departure, suggesting a flexible investment through control by body mass. The experimental study showed that handicapped females and female partners of handicapped males lost mass compared to control birds, whereas there was no difference for males. These results indicate that the larger female is the main provisioner of the chick in the pair, and regulates breeding effort in relation to its own body mass, whereas males have a fixed investment. The different breeding investment between the sexes is associated with contrasting foraging strategies, but no clear niche differentiation was observed. The larger size of the females may be advantageous for provisioning the chick with large quantities of energy and for flexible breeding effort, while the smaller male invests in territory defence and nest guarding, a crucial task when breeding at high densities. In masked boobies, division of labour appears to be maximal during chick rearing—the most energy-demanding period—and may be related to evolution of RSD.  相似文献   

14.
Even though most bird species with a raptorial feeding habit express varying extents of reversed sexual dimorphism (RSD: females bigger than males), the evolutionary basis for its maintenance, as well as its possible secondary consequences for the ecological adaptations of the different sexes, is debated. We studied pairs of tawny owls, Strix aluco (females 20% heavier than males), throughout the year by telemetry to test whether any inter-sexual differences in movement patterns, resource partitioning and breeding effort correlated with RSD. Females were larger than males in all body size measures and were 16% heavier than would be expected from the difference in wing length alone. In accordance with predictions from flight economics, males moved longer distances per time unit than females, in particular during the post-fledging season, when they also fed chicks more often than the females. Males had larger home ranges than females during the post-fledging period, whereas the sexes had home ranges of equal size during the non-breeding season. Until 10 days after fledging, females foraged much closer to the offspring than males, apparently balancing their distance to offspring between the needs of offspring guarding and foraging. In males, the parent–offspring distance only increased with decreasing brood condition. The sexes did not differ in habitat use or feeding habits, rendering no indications of food niche partitioning. The study provides further evidence that selection for males to be light and energetically efficient foragers is the main evolutionary force behind RSD in raptorial birds, even when the prey base is confined by territoriality.  相似文献   

15.
The Savannah Sparrow (Passerculus sandwichensis) is a widespread and common North American bird that shows both geographic variation and sexual dimorphism in size. I used information from 24 measurements on 1,791 individuals from 51 populations to test two hypotheses (sexual-selection and niche-partitioning) about the evolution of sexual dimorphism. Throughout their range male Savannah Sparrows are larger, on average, than females. This doubtless reflects Darwinian sexual selection, for territorial fights usually involve males, many of whom fail to obtain mates. In some parts of their range, Savannah Sparrows are commonly polygynous, whereas in others they are characteristically monogamous. Among species of American sparrows (subfamily Emberizinae) sexual size dimorphism is generally greater in polygynous species than in monogamous ones. However, I did not find a similar trend among populations of Savannah Sparrows. The amount of dimorphism in all populations of Savannah Sparrows is equivalent in magnitude to that of other species of sparrows that are commonly or regularly polygynous, and it is greater than that of other sparrow species that are characteristically monogamous. The amount of sexual dimorphism, either in overall size or in bill size, does not correlate with species diversity and does not differ between island and mainland populations. These results do not support the niche-variation hypothesis. Size dimorphism is relatively great in populations of Savannah Sparrows that are resident in southwestern salt marshes, and these birds are the only sparrow-like birds that generally breed in these marshes. Dimorphism is, in general, relatively great in marsh-dwelling species in the family Emberizidae. These species are commonly, but not always, polygynous; the mating systems of the salt-marsh Savannah Sparrows are not known. There are no significant differences in the extent of dimorphism among populations of salt-marsh sparrows, and there are few among the non-salt-marsh ones, probably reflecting conservatism in the evolution of size dimorphism.  相似文献   

16.
In many bird and mammal species, males are significantly larger than females. The prevailing explanation for larger-sized males is that sexual selection drives increased male size. In addition, researchers commonly assume that the extent of dimorphism indicates the strength of selection for increased size in males. Here, through reconstruction of ancestral morphology for males and females of one large avian clade we present data that contradict this assumption and illustrate that selection for decreased female size explains 'male-biased' dimorphism ca. 50% of the time. Our findings are also inconsistent with ecological niche partitioning between the sexes and increased breeding benefits from reduced female size as general explanations for the evolution of size dimorphism within the clade. We conclude that it is incorrect to assume sexual dimorphism results from a single selective factor, such as directional sexual selection on increased male size. Rather, we suggest that the selective forces leading to sexual dimorphism may vary between species and should be tested on a case-by-case basis using a phylogenetic approach.  相似文献   

17.
鸟类性二态现象广泛存在,比如身体大小、羽色等,性二态很可能是自然选择和性选择共同作用的结果.为了探索和更好地了解雀形目鸟类身体大小性二态的进化,在2019年繁殖季节早期研究了灰椋鸟(Sturnus cineraceus)野外种群身体大小和内脏器官形态的两性差异.结果表明,除嘴宽外,其他身体特征参数均雄性显著大于雌性,表...  相似文献   

18.
Female-biased sexual size dimorphism is uncommon among vertebrates and traditionally has been attributed to asymmetric selective pressures favoring large fecund females (the fecundity-advantage hypothesis) and/or small mobile males (the small-male advantage hypothesis). I use a phylogenetically based comparative method to address these hypotheses for the evolution and maintenance of sexual size dimorphism among populations of three closely related lizard species (Phrynosoma douglasi, P. ditmarsi, and P. hernandezi). With independent contrasts I estimate evolutionary correlations among female body size, male body size, and sexual size dimorphism (SSD) to determine whether males have become small, females have become large, or both sexes have diverged concurrently in body size during the evolutionary Xhistory of this group. Population differences in degree of SSD are inversely correlated with average male body size, but are not correlated with average female body size. Thus, variation in SSD among populations has occurred predominantly through changes in male size, suggesting that selective pressures on small males may affect degree of SSD in this group. I explore three possible evolutionary mechanisms by which the mean male body size in a population could evolve: changes in size at maturity, changes in the variance of male body sizes, and changes in skewness of male body size distributions. Comparative analyses indicate that population differentiation in male body size is achieved by changes in male size at maturity, without changes in the variance or skewness of male and female size distributions. This study demonstrates the potential of comparative methods at lower taxonomic levels (among populations and closely related species) for studying microevolutionary processes that underlie population differentiation.  相似文献   

19.
Differences in the strength of sexual selection between males and females can lead to sexual dimorphism. Extra-pair paternity (EPP) can increase the variance in male reproductive success and hence the opportunity for sexual selection. Previous research on birds suggests that EPP drives the evolution of dimorphism in plumage colour and in body size. Because EPP increases the intensity of sexual selection in males, it should lead to increased dimorphism in species with larger or more colourful males, but decreased dimorphism in species with larger or more colourful females. We explored the covariation between EPP and sexual dimorphism in wing length and plumage colouration in 401 bird species, while controlling for other, potentially confounding variables. Wing length dimorphism was associated positively with the frequency of EPP, but also with social polygamy, sex bias in parental behaviour and body size and negatively with migration distance. The frequency of EPP was the only predictor of plumage colour dimorphism. In support of our prediction, high EPP levels were associated with sexual dichromatism, positively in species in which males are more colourful and negatively in those in which females are more colourful. Contrary to our prediction, high EPP rates were associated with increased wing length dimorphism in species with both male- and female-biased dimorphism. The results support a role for EPP in the evolution of both size and plumage colour dimorphism. The two forms of dimorphism were weakly correlated and predicted by different reproductive, social and life-history traits, suggesting an independent evolution.  相似文献   

20.
Observations and several types of field experiments on the mating behavior of wood frogs have revealed the proximate mechanisms for a size-related reproductive advantage in both males and females. For females, larger individuals produce larger clutches; for males, larger individuals can better remain clasped to females when contested by rival males and can better depose males clasped to other females. No results obtained support of the existence of mate choice in either males or females. Males were estimated to be 4.74 times as variable as females in the number of zygotes produced per individual per season; however, much of the variation in male RS resulted from a male-biased sex ratio at the breeding site rather than from sexual selection. After taking sex ratio effects into consideration, males were estimated to be only 1.63 times as variable as females. Patterns of variation in RS in males and females are associated with numerous sex-specific differences in life history and morphology. Life history differences include differential growth rates, ages at sexual maturity, and rates of mortality. Interpretation of how the body size dimorphism (females larger than males) in this species relates to sexual selection is consistent with information on how similar variations in body size influence RS for each sex, and how males and females differ in the functional relationship between body size and RS. Average RS increases more with body size in females than in males. Although body size directly influences RS for females, the possibility exists that, for males, other anatomical features correlated with body size more directly affect RS. Preliminary evidence suggests that sexual selection influences male arm length and that the male body size : RS relationship results as an incidental correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号