首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of nitric oxide (NO) on the production of 14CO2 from labeled glucose in uteri isolated from ovariectomized-estrogenized rats was studied. Nitroprusside, an NO donor (NP), 200 μM increased the formation of labeled CO2 from [U-14C]glucose. This effect was blunted by hemoglobin (Hb) 20 μg/mL, an NO scavenger. The addition of N-monomethyl arginine (NMMA), an inhibitor of NO synthase decreased the stimulatory action of NP at 400 mM. Incubation of uterine strips in the presence of NP plus acetylsalicylic acid (ASA) 10−4 M (a cyclooxygenase inhibitor), inhibited the stimulatory action of NP on glucose metabolism. PGE2 (10−7 M) added to the incubation medium containing NP and ASA reversed the effect of the inhibitor. Neither NP nor Hb nor NMMA modified the 14CO2 production from labeled glucose in uterine strips from ovariectomized rats. The addition of NP to the incubating medium increased PGE accumulation by uterine strips from rats treated with estradiol, but not in ovariectomized animals. These results suggest that NO exerts a positive influence on glucose metabolism and PGE synthesis in isolated rat uteri from estrogenized animals.  相似文献   

2.
It is shown that agmatine inhibits L-type Ca2+ currents in isolated cardiomyocytes of rats in a dose-dependent manner. The inhibitory analysis indicates that imidazoline receptors of type I (I1Rs) rather than α2-adrenoceptors (α2-ARs) are implicated in mediating the effects of agmatine. Agmatine affects the dynamics of intracellular Ca2+ concentration changes in spontaneously active cardiomyocytes. The averaged intracellular Ca2+ concentration ([Ca2+]in) varied biphasically, depending on the agmatine dose: at 1–500 μM, agmatine decreased [Ca2+]in; at 500 μM-2 mM, [Ca2+]in remained unchanged, and at concentrations above 2 mM agmatine caused an increase of [Ca2+]in. The effects of low agmatine concentrations were inhibited by 7NI, an inhibitor of NO synthases (NOS), as well as by the inhibitors of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) thapsigargin and cyclopiazonic acid. In contrast, ODQ, a blocker of NO-sensitive guanylate cyclase, and the antagonist of I1Rs efaroxan were ineffective. At low concentrations agmatine did not affect the increase in [Ca2+]in induced by stimulating doses of ryanodine (40 nM). In addition, agmatine at low doses was found to markedly stimulate NO production. When efaroxan (10 μM) or ryanodine (200 μM) were added to the bath to inhibit I1Rs and ryanodine receptors (RyRs), respectively, [Ca2+]in became much less sensitive to millimolar agmatine. In contrast to low concentrations (100 μM), high agmatine doses (10–15 mM) did not stimulate the NO synthesis but were effective as NOS inducer in cells pretreated with efaroxan. The selective I1R agonist rilmenidine increased [Ca2+]in in a dose-dependent manner. The effect of rilmenidine was similar to that of agmatine at high doses and was abolished by RyRs inhibition. Our findings indicate that in spontaneously active cardiomyocytes agmatine at low concentrations decreases [Ca2+]in, does not stimulate I1Rs but most likely enhances NO synthase followed by an increase in SERCA activity due to the direct nitrosylation of SERCA and/or phospholamban. The effects of high agmatine doses are apparently mediated by I1Rs and involve RyRs.  相似文献   

3.
Diabetes is associated with endothelial dysfunction and platelet activation, both of which may contribute to increased cardiovascular risk. The purpose of this study was to characterize circulating platelets in diabetes and clarify their effects on endothelial function. Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. Each experiment was performed by incubating carotid arterial rings with platelets (1.65×107 cells/mL; 30 min) isolated from STZ or control rats. Thereafter, the vascular function was characterized in isolated carotid arterial rings in organ bath chambers, and each expression and activation of enzymes involved in nitric oxide and oxidative stress levels were analyzed. Endothelium-dependent relaxation induced by acetylcholine was significantly attenuated in carotid arteries treated with platelets isolated from STZ rats. Similarly, treatment with platelets isolated from STZ rats significantly reduced ACh-induced Akt/endothelial NO synthase signaling/NO production and enhanced TXB2 (metabolite of TXA2), while CD61 (platelet marker) and CD62P (activated platelet marker) were increased in carotid arteries treated with platelets isolated from STZ rats. Furthermore, the platelets isolated from STZ rats decreased total eNOS protein and eNOS dimerization, and increased oxidative stress. These data provide direct evidence that circulating platelets isolated from diabetic rats cause dysfunction of the endothelium by decreasing NO production (via Akt/endothelial NO synthase signaling pathway) and increasing TXA2. Moreover, activated platelets disrupt the carotid artery by increasing oxidative stress.  相似文献   

4.
The effect of female sex hormones on nitric oxide (NO) production was studied in alveolar macrophages (AMs). Male rats were treated with endotoxin (LPS) intratracheally or saline as control. AMs were obtained by bronchoalveolar lavage 90 min later and were cultured in the presence or in the absence of LPS and 17β-estradiol or progesterone (10−9to 10−4M). NO production was assessed by measurement of nitrites in the medium. In some experiments, NO production by AMs was measured in intratracheally LPS-treated orchidectomized rats or in female control and ovariectomized rats. Both spontaneous and stimulated NO production were higher in AMs from female than from male rats, but without statistical significance. However, ovariectomy induced significant inhibition in spontaneous production of NO by AMs. In orchidectomized rats, the NO response by AMs to LPS stimulation relative to spontaneous NO production was significantly downregulated. Female sex hormones in physiological concentrations seem to be necessary for spontaneous NO production in female rats. Pharmacological doses of estradiol inhibitedin vitroLPS-stimulated NO production in AMs of both saline- and LPS-treated rats, and basal NO production only in LPS-treated male rats. Progesterone at 10−4M inhibited basal andin vitroLPS-stimulated NO generation by AMs of both saline- and LPS-treated male rats. In LPS-treated female ratsin vitroLPS-stimulated NO production was not affected by estradiol treatment. In ovariectomized LPS-treated female rats progesterone at 10−5M significantly inhibited NO production byin vitro-stimulated AMs. Thus female sex hormones may contribute to the gender-related differences in the immune response.  相似文献   

5.
Fo Shou San (FSS) is an ancient herbal decoction comprised of Chuanxiong Rhizoma (CR; Chuanxiong) and Angelicae Sinensis Radix (ASR; Danggui) in a ratio of 2∶3. Previous studies indicate that FSS promotes blood circulation and dissipates blood stasis, thus which is being used widely to treat vascular diseases. Here, we aim to determine the cellular mechanism for the vascular benefit of FSS. The treatment of FSS reversed homocysteine-induced impairment of acetylcholine (ACh)-evoked endothelium-dependent relaxation in aortic rings, isolated from rats. Like radical oxygen species (ROS) scavenger tempol, FSS attenuated homocysteine-stimulated ROS generation in cultured human umbilical vein endothelial cells (HUVECs), and it also stimulated the production of nitric oxide (NO) as measured by fluorescence dye and biochemical assay. In addition, the phosphorylation levels of both Akt kinase and endothelial NO synthases (eNOS) were markedly increased by FSS treatment, which was abolished by an Akt inhibitor triciribine. Likewise, triciribine reversed FSS-induced NO production in HUVECs. Finally, FSS elevated intracellular Ca2+ levels in HUVECs, and the Ca2+ chelator BAPTA-AM inhibited the FSS-stimulated eNOS phosphorylation. The present results show that this ancient herbal decoction benefits endothelial function through increased activity of Akt kinase and eNOS; this effect is causally via a rise of intracellular Ca2+ and a reduction of ROS.  相似文献   

6.
The “arginine paradox” in cardiomyocytes isolated from the left ventricle of Spraque Dawlay (SD) and spontaneously hypertensive rats (SHR) was studied. With 1 mM L-arginine in the bath, the addition of 5 mM L-arginine to incubation medium increased NO production and inhibited amplitude of L-type Ca2+ currents in SD cardiomyocytes. A variety of compounds, including the antagonist of α2-adrenoceptors yohimbine and inhibitors of PI3 kinase (wortmanine), NO synthase (7NI), and cGMP-dependent protein kinase (KT5823), dramatically weakened the inhibitory effects of 5 mM L-arginine on Ca2+ currents. The agonist of α2-adrenoceptors guanabenz acetate increased NO production and inhibited Ca2+ currents, while wortmanine, 7NI, and KT5823 antagonized guanabenz. In SHR cardiomyocytes, the “arginine paradox” was not observed: 5 mM L-arginine affected neither NO production nor Ca2+ currents. Consistently, guanabenz acetate did not alter NO production and inhibited Ca2+ currents to a much smaller extent in SHR cardiomyocytes as compared to SD cardiomyocytes. Taken together, the data of the inhibitory analysis suggest that millimolar L-arginine serves as an agonist of α2-adrenoceptors, which are coupled to PI3K-Akt pathway as well as downstream NO-cGMP pathway to control activity of L-type Ca2+ channels, thus providing new insights into the “arginine paradox” in cardiomyocytes.  相似文献   

7.
It is unclear whether the abnormal relaxation seen in diabetes is due to decreased levels of nitric oxide (NO) and how eicosapentaenoic acid (EPA, C20:5ω3) affects the endothelial production of NO. We investigated the effects of EPA ethyl ester (EPA-E) and elevated glucose on NO production by human endothelial cells (HUE). EPA-E (0.3 mM) significantly enhanced [NO2] production and the intracellular concentration of free Ca2+within 3 min after EPA-E was added to the cultures. High levels of glucose (27.5 mM) significantly increased endothelial glucose, sorbitol and fructose, and inhibited [NO2] production. However, EPA-E (0.3 mM) prevented the inhibition of [NO2] production due to the activation of the Ca2+-calmodulin system of NO synthase. EPA-E decreased the glucose-mediated inhibition of NO production by HUE. These results suggest this agent might ameliorate endothelial dysfunction associated with diabetes.  相似文献   

8.
Oxidative stress is important in the pathogenesis of renal ischemia-reperfusion (IR) injury; however whether imbalances in reactive oxygen production and disposal account for susceptibility to injury is unclear. The purpose of this study was to compare necrosis, apoptosis, and oxidative stress in IR-resistant Brown Norway rats vs. IR-susceptible Sprague-Dawley (SD) rats in an in vivo model of renal IR injury. As superoxide (O2·−) interacts with nitric oxide (NO) to form peroxynitrite, inducible NO synthase (iNOS) and nitrotyrosine were also examined. Renal IR was induced in SD and BN rats by bilateral clamping of renal arteries for 45 min followed by reperfusion for 24 h (SD 24 and BN 24, respectively). BN rats were resistant to renal IR injury as evidenced by lower plasma creatinine and decreased acute tubular necrosis. TUNEL staining analysis demonstrated significantly decreased apoptosis in the BN rats vs. SD rats after IR. Following IR, O2·− levels were also significantly lower in renal tissue of BN rats vs. SD rats (P < 0.05) in conjunction with a preservation of the O2·− dismutating protein, CuZn superoxide dismutase (CuZn SOD) (P < 0.05). This was accompanied by an overall decrease in 4-hydroxynonenal adducts in the BN but not SD rats after IR. BN rats also displayed lower iNOS expression (P < 0.05) resulting in lower tissue NO levels and decreased nitrotyrosine formation (P < 0.01) following IR. Collectively these results show that the resistance of the BN rat to renal IR injury is associated with a favorable balance of oxidant production vs. oxidant removal. This work was supported in part by a Medical College of Wisconsin-Research Affairs Committee Grant to V. Nilakantan, and by divisional funds to V. Nilakantan and B.D. Shames.  相似文献   

9.
Previous studies indicate that the nitric oxide (NO) increase at fertilization in sea urchin eggs is Ca2+-dependent and attributed to the late Ca2+ rise. However, its role in fertilization still remains unclear. Simultaneous measurements of the activation current, by a single electrode voltage clamp, and NO, using the NO indicator DAF-FM, showed that the NO increase occurred at the time of peak current (tp) which corresponds to peak [Ca2+]i, suggesting that NO is not related to any other ionic changes besides [Ca2+]i. We measured O2 consumption by a polarographic method to examine whether NO regulated a respiratory burst for protection as reported in other biological systems. Our results suggested NO increased O2 consumption. The fluorescence of reduced pyridine nucleotides, NAD(P)H was measured in controls and when the NO increase was eliminated by PTIO, a NO scavenger. Surprisingly, PTIO decreased the rate of the fluorescence change and the late phase of increase in NAD(P)H was eliminated. PTIO also suppressed the production of H2O2 and caused weak and high fertilization envelope (FE). Our results suggest that NO increase upregulates NAD(P)H and H2O2 production and consolidates FE hardening by H2O2.  相似文献   

10.
The mechanisms of nitric oxide (NO) synthesis in plants have been extensively investigated. NO degradation can be just as important as its synthesis in controlling steady-state levels of NO. Here, we examined NO degradation in mitochondria isolated from potato tubers and the contribution of the respiratory chain to this process. NO degradation was faster in mitochondria energized with NAD(P)H than with succinate or malate. Oxygen consumption and the inner membrane potential were transiently inhibited by NO in NAD(P)H-energized mitochondria, in contrast to the persistent inhibition seen with succinate. NO degradation was abolished by anoxia and superoxide dismutase, which suggested that NO was consumed by its reaction with superoxide anion (O2). Antimycin-A stimulated and myxothiazol prevented NO consumption in succinate- and malate-energized mitochondria. Although favored by antimycin-A, NAD(P)H-mediated NO consumption was not abolished by myxothiazol, indicating that an additional site of O2 generation, besides complex III, stimulated NO degradation. Larger amounts of O2 were generated in NAD(P)H- compared to succinate- or malate-energized mitochondria. NAD(P)H-mediated NO degradation and O2 production were stimulated by free Ca2+ concentration. Together, these results indicate that Ca2+-dependent external NAD(P)H dehydrogenases, in addition to complex III, contribute to O2 production that favors NO degradation in potato tuber mitochondria.  相似文献   

11.
《Free radical research》2013,47(12):1496-1513
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O2??) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO?) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O2?? and ONOO? during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O2?? production and downstream reactions involving NO, O2??, ONOO?, H2O2 and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O2??, ONOO? and H2O2 in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O2?? production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O2?? concentration by 90% at all [BH4]/[TBP] ratios, (iv) SOD reduces ONOO? concentration and increases H2O2 concentration during eNOS uncoupling, (v) Catalase can reduce H2O2 concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress.  相似文献   

12.
Abstract

Nitric oxide (NO) is synthesised by a group of enzymes called nitric oxide synthases (NOS) and oxidizes to its stable end-products nitrite (NO2-) and nitrate (NO3-) We have previously reported in an in vivo rat model that NO is an important regulator for rat bone fracture healing.1 This study examines the effects of NO on alkaline phosphatase (ALP) activity in a rat fracture callus explant culture system. Explants of rat femoral fracture callus from days 4, 7, 14 and 28 post fracture induced NO2- release and ALP activity in a biphasic temporal manner, with the highest activity on day 7 and the lowest activity on day 14. Inhibition of NOS by co-incubation with an NOS inhibitor,S-(2-aminoethyl) isothiouronium bromide hydrobromide (AETU), inhibited ALP activity by an average of 50% at each time point (P <0.01). Supplementation with NO donor 3-morpholino-sydnonomine hydrochloride (SIN-1) at low doses (25 and 0.025 µM) increased ALP activity by 20% (P <0.01). ALP mRNA and histochemical ALP activity were localised to osteoblast-like and chondrocyte-like cells within fracture callus. The current study provides evidence that NO plays a regulatory role in ALP activity during rat fracture healing.  相似文献   

13.
The purpose of this study was to elucidate the role of NO and O-2 on enzymatic components of cyclooxygenase (COX) pathway in peritoneal macrophages. Activation of murine peritoneal macrophages by lipopolysaccharides (LPS) resulted in time-dependent production of nitric oxide (NO) and prostaglandin E2 (PGE2). This stimulation was also accompanied by the production of other reactive oxygen species such as superoxide (O-2), and by increased expression of COX-2. Our results provide evidence that O-2 may be involved in the pathways that result in arachidonate release and PGE2 formation by COX-2 in murine peritoneal macrophages stimulated by LPS. However, we were not able to demonstrate that NO participates in the regulation of PG production under our experimental conditions.  相似文献   

14.

Background

The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness.

Methodology/Principal Findings

Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NOx ), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and Nε-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NOx levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NOx levels were partially restored.

Conclusion

Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery.  相似文献   

15.
Nitric oxide (NO) release from nitric oxide synthases (NOSs) depends on the dissociation of a ferric heme-NO product complex (FeIIINO) that forms immediately after NO is made in the heme pocket. The NOS-like enzyme of Bacillus subtilis (bsNOS) has 10-20 fold slower FeIIINO dissociation rate (kd) and NO association rate (kon) compared to mammalian NOS counterparts. We previously showed that an Ile for Val substitution at the opening of the heme pocket in bsNOS contributes to these differences. The complementary mutation in mouse inducible NOS oxygenase domain (Val346Ile) decreased the NO kon and kd by 8 and 3-fold, respectively, compared to wild-type iNOSoxy, and also slowed the reductive processing of the heme-O2 catalytic intermediate. To investigate how these changes affect steady-state catalytic behaviors, we generated and characterized the V346I mutant of full-length inducible NOS (iNOS). The mutant exhibited a 4-5 fold lower NO synthesis activity, an apparent uncoupled NADPH consumption, and formation of a heme-NO complex during catalysis that was no longer sensitive to solution NO scavenging. We found that these altered catalytic behaviors were not due to changes in the heme reduction rate or in the stability of the enzyme heme-O2 intermediate, but instead were due to the slower NO kon and kd and a slower oxidation rate of the enzyme ferrous heme-NO complex. Computer simulations that utilized the measured kinetic values confirmed this interpretation, and revealed that the V346I iNOS has an enhanced NADPH-dependent NO dioxygenase activity that converts almost 1 NO to nitrate for every NO that the enzyme releases into solution. Together, our results highlight the importance of heme pocket geometry in tuning the NO release versus NO dioxygenase activities of iNOS.  相似文献   

16.
Role of nitrification and denitrification for NO metabolism in soil   总被引:3,自引:0,他引:3  
Release and uptake of NO was measured in a slightly alkaline (pH 7.8) and an acidic (pH 4.7) cambisol. In the alkaline soil under aerobic conditions, NO release was stimulated by ammonium and inhibited by nitrapyrin. Nitrate accumulated simultaneously and was also inhibited by nitrapyrin.15NO was released after fertilization with15NH4NO3 but not with NH4 15NO3. The results indicate that in aerobic alkaline cambisol NO was mainly produced during nitrification of ammonium. The results were different under anaerobic conditions and also in the acidic cambisol. There, NO release was stimulated by nitrate and not by ammonium, and was inhibited by chlorate and not by nitrapyrin indicating that NO production was exclusively due to reduction of nitrate. The results were confirmed by15NO being released mainly from NH4 15NO3 rather than from15NH4NO3. The observed patterns of NO release were explained by the NO production processes being stimulated by either ammonium or nitrate in the two different soils, whereas the NO consumption processes being only stimulated by nitrate. NO release was larger than N2O release, but both were small compared to changes in concentrations of soil ammonium or nitrate.(*request for offprints)  相似文献   

17.
Based on ethnopharmacological indications that Mentha species may be used in the treatment of gastrointestinal diseases, this study aimed to characterize the gastroprotective mechanisms of menthol (ME), the major compound of the essential oil from species of the genus Mentha. The gastroprotective action of ME was analyzed in gastric ulcers that were induced by ethanol or indomethacin in Wistar male rats. The mechanisms responsible for the gastroprotective effect were assessed by analyzing the amount of mucus secreted, involvement of non-protein sulfhydryl (NP-SH) compounds, involvement of calcium ion channels and NO/cGMP/K+ATP pathway, gastric antisecretory activity and the prostaglandin E2 (PGE2) production. The anti-diarrheal activity and acute toxicity of ME were also evaluated. Oral treatment with ME (50 mg/kg) offered 88.62% and 72.62% of gastroprotection against ethanol and indomethacin, respectively. There was an increased amount of mucus and PGE2 production. The gastroprotective activity of ME involved NP-SH compounds and the stimulation of K+ATP channels, but not the activation of calcium ion channels or the production of NO. The oral administration of ME induced an antisecretory effect as it decreased the H+ concentration in gastric juice. ME displayed anti-diarrheal and antiperistaltic activity. There were no signs of toxicity in the biochemical analyses performed in the rats’ serum. These results demonstrated that ME provides gastroprotective and anti-diarrheal activities with no toxicity in rats.  相似文献   

18.
Rat strains feature different resistances to stress. The increased production of nitric oxide (NO) in the August strain prevents the appearance of ulcerous lesions of gastric mucosa and behavioral changes induced by restraint stress. Wistar rats feature a lower level of NO production and are more sensitive to restraint stress compared to the August rats according to both the ulcerous gastric lesions and behavioral parameters. The stress-induced release of catecholamines was mimicked by experimental hyperfunction of the dopaminergic (DA) system induced by L-DOPA. The NO synthase inhibitor N-nitro-L-arginine (L-NNA) enhanced the L-DOPA-induced behavioral changes. This effect was more pronounced in the August strain. The administration of the exogenous NO donor, dinitrosyl iron complexes (DNIC), limited the behavioral disturbances induced by L-DOPA in both rat strains. The protective effect of DNIC in conditions of the DA system hyperfunction is similar to the effect of a D2blocker sulpiride. Thus, NO has a central antistress effect apparently mediated by limiting the release of catecholamines.  相似文献   

19.
The mechanisms involved in plant defense show several similar characteristics with the innate immune systems of vertebrates and invertebrates. In animals, nitric oxide (NO) cooperates with reactive oxygen intermediates (ROI) to kill tumor cells and is also required for macrophage killing of bacteria. Such cytotoxic events occur because unregulated levels of NO determine its diffusion-limited reaction with O2 generating peroxynitrite (ONOO), a mediator of cellular injury in many biological systems. In soybean suspension cells, unregulated NO production during the onset of a pathogen-induced hypersensitive response (HR) is not sufficient to activate the hypersensitive cell death, which is triggered only by fine tuning the NO/ROI ratio. Furthermore, that hypersensitive cell death is activated following interaction of NO with H2O2, rather than O2. Increasing O2 levels reduces NO-derived toxicity, and the addition of ONOO to soybean suspensions does not affect cell viability. Consistently with the fact that ONOO is not an essential mediator of NO/RO-induced cell death, during the HR superoxide dismutase (SOD) accelerates O2 dismutation to H2O2 and therefore minimizes the loss of NO by reaction with O2 and triggers hypersensitive cell death through the NO/H2O2 synergism. Consequently, the rates of production and dismutation of O2 generated during the oxidative burst play a crucial role in modulating NO signaling through the cell death pathway, which proceeds through mechanisms different from those commonly observed in animals.  相似文献   

20.
The effect of nitrate and ammonium application (0, 50, 100 and 150 mg N kg-1 soil) was studied in an incubation experiment. Four Belgian soils, selected for different soil characteristics, were used. The application of both nitrate and ammonium caused an increase of the NO and N2O emission. The NO production from nitrate and ammonium was found to be of the same order of magnitude. At low pH the NO production was found to be highest from nitrate, at higher pH values the production was found to be higher from ammonium. This seems to be the result of the negative effect of low pH on nitrification.The ANOVA analysis was carried out to separate the effect of the form of nitrogen, quantily of N applied and soil characteristics. The total production of NO was found to depend for 97% on the soil characteristics and for 3% on the quantity of N added. The total N2O production depended for 100% on the soil characteristics.Stepwise regression analysis showed that the total NO production was best predicted by a combination of the factors CaCO3 content and NH4 + concentration in the soil. Total N2O production was best described by a combination of CaCO3, water soluble carbon (WSC) and sand-content.The N2O/NO ratio was found to be highly variable, indicating that their productions react differently to changes in conditions, or are partly independent.It may be concluded that to NO and N2O from soils both nitrification and denitrification may be equally important, their relative importance depending on local conditions such as substrate availability, water content of the soil etc. However, the NO production seems to be more nitrification dependent than the N2O production. ei]{gnE}{fnMerckx}{edSection editor}  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号