共查询到20条相似文献,搜索用时 0 毫秒
1.
Solubilization and partial purification of a rat intestinal 1,25-dihydroxyvitamin d3 binding protein
A protein containing fraction that will bind 1,25-dihydroxyvitamin D3 both and has been solubilized from the nuclear-debris fraction of rat intestinal mucosa and purified 15-fold. 相似文献
2.
In the presence of 0.3 M potassium chloride and 0.5 mM dithiothreitol, rat intestinal cytosol contains two binding proteins for 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)1 having sedimentation coefficients of 3.2S and 5–6S. The 3.2S protein is specific for 1,25-(OH)2D3 as determined by competition analysis, whereas the 5–6S protein binds 25-hydroxyvitamin D3 (25-OH-D3) exclusively. 相似文献
3.
To study general stimulatory effects of 1,25-dihydroxyvitamin D3 on intestinal protein synthesis, slices of duodenal villi from 1,25-dihydroxyvitamin D3-treated and vitamin D-deficient rats were incubated in vitro for 90 min at the surface of medium containing [3H]leucine. Incorporation of the [3H]leucine into TCA-precipitated protein, which was shown to be linear for 12 h and 90% inhibited by cycloheximide, was increased by 50-60% at 26 h after a single injection of 125 ng of 1,25-dihydroxyvitamin D3 (three experiments, P less than 0.001). The increase, which was not due to circadian rhythm fluctuations of the intestine, was in synchrony with the second Ca2+ transport response observed by Halloran and DeLuca (Arch. Biochem. Biophys. 208, 477-486, 1981). However, no significant difference in [3H]leucine incorporation was observed before or during the initial Ca2+ transport response observed by Halloran and DeLuca, i.e., at 1.0, 3.0, and 6.5 h following an injection of 1,25-dihydroxyvitamin D3. The late onset of the 1,25-dihydroxyvitamin D3-induced increase in total protein synthesis implies that it is an indirect rather than a direct effect of the hormone. 相似文献
4.
Stimulation of 1,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3 in the hypocalcaemic rat. 总被引:5,自引:0,他引:5 下载免费PDF全文
Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 alpha-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with increasing doses of vitamin D3, whereas it did not change in rats on a low-phosphorus diet given increasing doses of vitamin D3. In concert with these results, the 25-hydroxyvitamin D 1 alpha-hydroxylase activity was markedly increased by vitamin D3 administration to rats on a low-calcium diet, whereas the same treatment of rats on a low-phosphorus diet had no effect and actually suppressed the 1 alpha-hydroxylase in rats fed an adequate-calcium/adequate-phosphorus diet. The administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats on a low-calcium diet also increased the renal 25-hydroxy-vitamin D 1 alpha-hydroxylase activity. These results demonstrate that the regulatory action of 1,25-dihydroxyvitamin D3 on the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is complex and not simply a suppressant of this system. 相似文献
5.
The chick intestinal cytosol binding protein for 1,25-dihydroxyvitamin D3: A study of analog binding
Barbara E. Kream Mimi J.L. Jose Hector F. DeLuca 《Archives of biochemistry and biophysics》1977,179(2):462-468
The structural features of 1,25-dihydroxyvitamin D3 that permit its high affinity binding to a 3.7 S protein from chick intestinal cytosol were determined in a series of binding and competition experiments analyzed by sucrose density gradient centrifugation. Optimal binding to the 3.7 S protein was achieved when both 1α- and 25-hydroxyls were present in the vitamin D3 molecule. Modification of the side chain by the introduction of a methyl on C-24 and a double bond on C-22,23 (1,25-dihydroxyvitamin D2) did not alter the binding of 1,25-dihydroxyvitamin D3, but significantly diminished the binding of 25-hydroxyvitamin D3. However, introduction of a hydroxyl on C-24 decreased the ability of either 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 to compete, especially when the 24-hydroxyl was in the S configuration. These results reveal that the 3.7 S protein requires specific ligand structural features for binding and suggest that metabolite discrimination by the chick intestinal receptor system is likely located in the 3.7 S cytosol protein. 相似文献
6.
1,25-Dihydroxyvitamin D3(1,25-(OH)2D3) receptor was solubilized in cytosol fractions upon homogenization of hen intestinal mucosa with pyridoxal 5'-phosphate contained in a low ionic strength buffer. Pyridoxal 5'-phosphate did not inhibit the binding of 1,25-(OH)2D3 to its receptor. The receptor solubilized with pyridoxal 5'-phosphate was similar to the KCl-solubilized receptor in its binding affinity to the hormone and sedimentation coefficient. A majority (greater than 90%) of the mucosal 1,25-(OH)2D3 receptors were obtained as associating with crude chromatin which was prepared with a low ionic strength buffer, and this fraction of the receptor was solubilized with pyridoxal 5'-phosphate. Ten millimolar pyridoxal 5'-phosphate was as effective as approx 0.2 M KCl in solubilizing the receptor from the crude chromatin. Pyridoxal 5'-phosphate also showed a potency to dissociate the 1,25-(OH)2D3-receptor complex previously bound to DNA-cellulose. Pyridoxal 5'-phosphate-related compounds such as pyridoxamine 5'-phosphate and pyridoxal did not show this potency. These results suggest that pyridoxal 5'-phosphate reduced the interaction of 1,25-(OH)2D3 receptor with its nuclear binding components without inhibiting the binding of the receptor to the hormone. 相似文献
7.
We have studied the binding of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] to its crude chromatin chick intestinal receptor in the absence or presence of a ten-fold excess of 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] for each concentration of [3H]-1,25(OH)2D3 studied. We have found a significant shift to the right in the binding of 1,25(OH)2D3 to its receptor in the presence of this excess of 24R,25(OH)2D3. As a result, the affinity was found to be significantly reduced, the apparent dissociation constants varied from 0.97 +/- 0.09 (n = 5) to 1.36 +/- 0.04 nM (p less than 0.01). This reduction was related to a significant decrease in the positive cooperativity for the apparent Hill coefficient from nH = 1.49 +/- 0.06 to nH = 1.26 +/- 0.06 (p less than 0.03) in the binding of 1,25(OH)2D3 to its receptor. There was no significant change in the capacity of the receptor (189 +/- 11 compared to 200 +/- 9 fmoles/mg protein). These results suggest that the intestinal 1,25(OH)2D3 receptor must also have a binding recognition site for 24R,25(OH)2D3 which is postulated to play a regulatory role in the 1,25(OH)2D3 receptor's ligand binding properties. 相似文献
8.
Previously we purified and sequenced an 18-kDa chick duodenal protein that was modulated by 1,25-dihydroxyvitamin D3. The N-terminus of this protein has striking sequence homology to cellular retinol binding protein type II (CRBP II). Furthermore, this purified chick protein binds retinol. Antibodies have now been generated to the chick protein and used for immunoblot analysis to demonstrate that the chick protein has molecular weight, tissue distribution, and subcellular localization similar to rat CRBP II. These antibodies also cross-reacted with rat CRBP II. Antibodies to rat CRBP II cross-react with the chick protein. Northern analysis using a cDNA probe for rat CRBP II showed a single 860 base pair mRNA in both chick and rat intestinal RNA preparations. These results demonstrate that the 1,25-dihydroxyvitamin D3 modulated protein in chick embryonic organ culture is chick CRBP II. Pulse-chase experiments in chick embryonic duodenal organ culture strongly suggest that 1,25-dihydroxyvitamin D3 markedly decreases the synthesis of CRBP II, while not changing the degradation rate. The concentration of 1,25-dihydroxyvitamin D3 required for the decrease in CRBP II synthesis is approximately that required to stimulate calcium uptake into embryonic chick duodenal organ cultures. 相似文献
9.
10.
Specific binding proteins for 1,25-dihydroxyvitamin D3 were identified in bovine mammary tissue obtained from lactating and non-lactating mammary glands by sucrose density gradient centrifugation. The macromolecules had characteristic sedimentation coefficients of 3.5-3.7 S. The interaction of l,25-dihydroxy[3H]vitamin D3 with the macromolecule of the mammary gland cytosol occurred at low concentrations, was saturable, and was a high affinity interaction (Kd = 4.2 × 10?10M at 25 °C). Binding was reversed by excess unlabeled 1,25-dihydroxyvitamin D3, was destroyed by heat and/or incubation with trypsin. It is thus inferred that this macromolecule is protein as it is not destroyed by ribonuclease or deoxyribonuclease. 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3, and vitamin D3 did not effectively compete with 1,25-dihydroxyvitamin D3 for binding to cytosol of mammary tissue at near physiological concentrations of these analogs, thus demonstrating the specificity of the binding protein for 1,25-dihydroxyvitamin D3. In vitro subcellular distribution of 1,25-dihydroxy[3H]vitamin D3 demonstrated a time- and temperature-dependent movement of the hormone from the cytoplasm to the nucleus. By 90 min at 25 °C 72% of the 1,25-dihydroxy[3H]vitamin D3 was associated with the nucleus. In addition a 5–6 S macromolecule which binds 25-hydroxy[3H]vitamin D3 was demonstrated in mammary tissue. Finally, it is possible that the receptor-hormone complex present in mammary tissue may function in a manner analogous to intestinal tissue, resulting in the control of calcium transport by 1,25-dihydroxyvitamin D3 in this tissue. 相似文献
11.
Chicken intestinal receptor for 1,25-dihydroxyvitamin D3. Immunologic characterization and homogeneous isolation of a 60,000-dalton protein 总被引:4,自引:0,他引:4
The chick 1,25-dihydroxyvitamin D3 receptor has been identified via immunoblot analysis and isolated to homogeneity via positive immunoselection and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cytosolic extracts of intestinal mucosa, as well as purified samples highly enriched for receptor by nonimmunologic methodology were electrophoresed on denaturing gels, transferred to nitrocellulose, and probed utilizing a purified monoclonal antibody against the chick receptor. Two protein signals were detected by this approach, a major species of 60,300 daltons and a minor form at 58,600 daltons. Both immunologically identified species were present in receptor-positive tissues but were absent in receptor-negative liver extracts. The two immunoreactive cytosolic proteins comigrated with two polypeptides detected via Coomassie Blue staining as well as by immunoblot analysis after enrichment utilizing DNA-cellulose, blue dextran-Sepharose, and other chromatographic separation techniques. Increasing concentrations of the minor form during purification suggest it arises from the larger molecular weight species via proteolysis. Finally, both forms of the receptor were isolated to near homogeneity employing positive immunoselection and each individually purified to homogeneity employing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These experiments show that the chick receptor exists as a major species of 60,300 as well as a minor form of 58,600 and that both forms can be purified to homogeneity via immunoaffinity chromatography. 相似文献
12.
Cleavage of the rat intestinal 1,25-dihydroxyvitamin D3 receptor by an endogenous protease to a form with defective DNA binding 总被引:1,自引:0,他引:1
In this report we describe a form of the 1,25(OH)2D3 receptor which no longer binds to DNA. The defective form of the receptor was produced by the action of an endogenous protease. Rat intestinal receptors, obtained by a two-step procedure of a low salt homogenization followed by extraction of the chromatin pellet with high salt, fail to bind to DNA-cellulose. Inclusion of various serine protease inhibitors during the preparation protects against the loss of DNA binding. Sedimentation analysis in sucrose gradients indicates that the defective receptor is measurably smaller than the native receptor and is unable to aggregate normally under low salt conditions. The size difference, as determined by gel chromatography, is approximately 9,000 Da (56,000 for the protected receptor, 47,000 for the cleaved form). The elution from DEAE-cellulose indicates that the overall charge of both intact and cleaved receptor forms is very similar. Cell fractionation and mixing experiments suggest the enzyme may be located in the lysosomal compartment, organelles which are susceptible to breakage during the extraction procedure. The results demonstrate that an endogenous enzyme preferentially cleaves the 1,25(OH)2D3 DNA binding site resulting in a receptor with altered characteristics. Such an enzymatic activity has not been previously described for the 1,25(OH)2D3 receptor from other tissues or species. Since rat intestine is a classically studied target organ, these findings have additional relevance in receptor purification or other studies to characterize the receptor. 相似文献
13.
We have previously described a significant decrease in the positive cooperativity level and affinity of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] binding to its chick intestinal chromatin receptor induced in vitro by a physiological 10-fold molar excess of (24R)-25-dihydroxyvitamin D3 [24R,25(OH)2D3] [F. Wilhelm and A. W. Norman (1985) Biochem. Biophys. Res. Commun. 126, 496-501]. In this report, we have initiated a comparative study of the binding of 24R,25(OH)2[3H]D3 and 1,25(OH)2[3H]D3 to the the intestinal chromatin fraction obtained from vitamin D-replete birds. 24R,25(OH)2[3H]D3 specific binding to this chromatin fraction was characterized by a dissociation constant (Kd) of 34.0 +/- 6.4 nM, a positive cooperativity level (nH) of 1.40 +/- 0.13, and a capacity (Bmax) of 47 +/- 8 fmol/mg protein. The very low relative competitive index (RCI) of 24R,25(OH)2D3 (0.11 +/- 0.03%) for the 1,25(OH)2D3 binding site/receptor, as well as the inability of 1,25(OH)2D3 to displace 24R,25(OH)2D3 from its binding site at a physiological molar ratio of 1:10, strongly suggest the independence of 24R,25(OH)2D3 and 1,25(OH)2D3 binding sites. Stereospecificity of the 24R,25(OH)2D3 binding sites was attested by the displacement of only 45 +/- 6% of 24R,25(OH)2D3 specific binding by equimolar concentrations of 24S,25(OH)2D3. Collectively these results suggest the existence of a binding domain/receptor for 24,25(OH)2D3 in the chick intestine which is independent of the 1,25(OH)2D3 receptor. 相似文献
14.
The binding activity of four vitamin D metabolites and/or analogs for the intestinal 1,25-dihydroxyvitamin D3 receptor was evaluated after incubation at 25 degrees C for 1 h or at 0-4 degrees C for 18 h. The incubation conditions, which had no effect on the binding of 1,25-dihydroxyvitamin D3, had a dramatic effect on the binding of 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 and a small but reproducible effect on 24,25-dihydroxyvitamin D3 binding to receptor. Affinities 10- to 20-fold higher were obtained for 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, and affinities 3-fold higher were obtained for 24,25-dihydroxyvitamin D3 at the 0-4 degrees C/18-h incubation. A comparison of intestinal receptor from chick and pig with nine vitamin D compounds showed no major differences between the two species. The relative affinity of the vitamin D analogs to compete with tritiated 1,25-dihydroxyvitamin D3 for the receptor in pig nuclear extract, expressed as ratios of the molar concentration required for 50% binding of the tritiated 1,25-dihydroxyvitamin D3 compared to nonradioactive 1,25-dihydroxyvitamin D3, are as follows: 1,25-dihydroxyvitamin D3 (1) = 1,25-dihydroxyvitamin D2 = 24-homo-1,25-dihydroxyvitamin D3 greater than 1,24,25-trihydroxyvitamin D3 (4) greater than 25-hydroxyvitamin D3 (21) = 10-oxo-19-nor-25-hydroxyvitamin D3 = 1 alpha-hydroxyvitamin D3 (37) greater than 24,25-dihydroxyvitamin D2 (257) much much greater than vitamin D3 (greater than 10(6)). 相似文献
15.
Ketoconazole (an inhibitor of vitamin D-24 hydroxylase) was used to study the role of self-induced 1,25-dihydroxyvitamin D3 (1,25-D3) metabolism on cellular responsiveness to 1,25-D3. Eighteen hours of treatment with 1,25-dihydroxy-[26,27-methyl-3H]vitamin D3 (1,25-[3H]D3) increased total 1,25-D3 receptors (VDR) from 60 to 170 fmol mg/protein. In cells treated with both 1,25-[3H]D3 and ketoconazole, up-regulation of VDR was increased by 40% over that observed with cells receiving 1,25-[3H]D3 alone. Ketoconazole alone had no agonistic activity. Treatment of cells with 1 nM 1,25-[3H]D3 plus increasing doses of ketoconazole (0-30 microM) resulted in a dose-dependent increase in occupied VDR and total VDR. This up-regulation was associated with reduced 1,25-[3H]D3 catabolism. 1,25-[3H]D3-induced up-regulation of VDR typically peaked at 14 h and declined thereafter. Ketoconazole lengthened the time to reach peak VDR up-regulation to 20 h. The ability of ketoconazole to increase cell responsiveness (VDR up-regulation) was the result of both increased and prolonged occupancy of VDR by 1,25-[3H]D3. The t1/2 of occupied VDR was 2 h in the absence of ketoconazole and greater than 7 h when ketoconazole was present. Collectively, these results suggested that self-induced catabolism of 1,25-D3 is an important regulator of VDR occupancy and therefore cellular responsiveness to hormone. These data also demonstrate the usefulness of ketoconazole as an inhibitor of vitamin D hydroxylases in intact cells. 相似文献
16.
17.
M Zile E C Bunge L Barsness S Yamada H K Schnoes H F DeLuca 《Archives of biochemistry and biophysics》1978,186(1):15-24
Autoradiography of frozen sections of intestinal tissue taken from rachitic chickens given a single intravenous dose of 1,25-dihydroxy[23,243H]vitamin D3 (650 pmol, 78 Ci/ mmol) has been carried out. Specific localization of label in the nuclei of intestinal villi and crypt cells could be demonstrated at 2.5 to 6 h postinjection. In contrast, no concentration or localization of radioactivity could be detected in intestinal muscle, liver, and skeletal muscle. These results strongly support the concept that the function of 1,25-dihydroxyvitamin D3 in intestine is mediated by a nuclear mechanism. 相似文献
18.
Y Tanaka H F DeLuca Y Kobayashi N Ikekawa 《Archives of biochemistry and biophysics》1984,229(1):348-354
A new fluoro analog of 1,25-dihydroxyvitamin D3, i.e., 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3, has been compared with the native hormone, 1,25-dihydroxyvitamin D3, in its biological potency, duration of action, and binding to the vitamin D transport protein and intestinal receptor protein. The fluoro analog is about 5 times more active than the native hormone in healing rickets and elevating serum inorganic phosphorus levels of rachitic rats. It is about 10 times more active than 1,25-dihydroxyvitamin D3 in increasing intestinal calcium transport and bone calcium mobilization of vitamin D-deficient rats fed a low-calcium diet. Furthermore, the higher biopotency is manifested in animals after oral dosing. Of great importance is that the action of the fluoro analog is longer lasting than that of 1,25-dihydroxyvitamin D3. This is especially apparent in the elevation of serum phosphorus and bone mineralization responses. The fluoro analog is only slightly less competent than 1,25-dihydroxyvitamin D3 in binding to the vitamin D transport protein in rat blood, and is one-third as competent as 1,25-dihydroxyvitamin D3 in binding to the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. These results suggest that the basis for increased potency of this analog is likely the result of less rapid metabolism. 相似文献
19.
Immunomodulatory role of 1,25-dihydroxyvitamin D3. 总被引:5,自引:0,他引:5
J M Lemire 《Journal of cellular biochemistry》1992,49(1):26-31
The active vitamin D metabolite 1,25-dihydroxyvitamin D3 [1,25-D3] is thought to promote many of its actions through interaction with a specific intracellular receptor. The discovery of such receptors in monocytes and activated lymphocytes has led investigators to evaluate the role of the hormone on the immune system. The sterol inhibits lymphocyte proliferation and immunoglobulin production in a dose-dependent fashion. At a molecular level, 1,25-D3 inhibits the accumulation of mRNA for IL-2, IFN-gamma, and GM-CSF. At a cellular level, the hormone interferes with T helper cell (Th) function, reducing Th-induction of immunoglobulin production by B cells and inhibiting the passive transfer of cellular immunity by Th-clones in vivo. The sterol promotes suppressor cell activity and inhibits the generation of cytotoxic and NK cells. Class II antigen expression on lymphocytes and monocytes is also affected by the hormone. When given in vivo, 1,25-D3 has been particularly effective in the prevention of autoimmune diseases such as experimental autoimmune encephalomyelitis and murine lupus but its efficacy has been limited by its hypercalcemic effect. Synthetic vitamin D3 analogues showing excellent 1,25-D3-receptor binding but less pronounced hypercalcemic effects in vivo have recently enhanced the immunosuppressive properties of the hormone in autoimmunity and transplantation. 相似文献
20.
In this report we examine the DNA-cellulose binding and sedimentation properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) receptors from rat intestine and cultured human mammary cancer cells (MCF-7) extracted in nonactivating (low salt) buffers. Receptors prepared in hypotonic buffer had low DNA binding (13%) compared to receptors extracted with 0.3 M KCl (50%). Treatment of low salt receptor preparations with KCl significantly increased (approximately 3-fold) DNA-binding (activation), demonstrating that receptors can be "activated" in vitro. Activated receptors eluted from DNA-cellulose at 0.18 M KCl. Sedimentation analysis followed by DNA-cellulose binding indicated that activated receptors are approximately 3.2 S and unactivated receptors 5.5 S in size. These results suggest that dissociation of an aggregated moiety may lead to receptor activation. Treatment of unactivated receptor with RNase did not alter DNA binding or sedimentation properties of the aggregated receptor. Treatment of unactivated receptor complexes with heat did not increase DNA binding, and molybdate did not block subsequent salt activation. In summary these results suggest that 1,25(OH)2D3 receptors undergo a salt-induced activation step similar to that described for other steroid receptor systems. However, 1,25(OH)2D3 receptors differ from other steroid receptors in not exhibiting heat activation nor having salt activation blocked by molybdate. 相似文献