首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Cry4A is a dipteran-specific delta-endotoxin produced by Bacillus thuringiensis, and toxic to Culex pipiens (mosquito) larvae. The immunohistochemical staining of the midgut sections of C. pipiens larvae revealed that Cry4A bound in vitro and in vivo to the microvilli of the epithelial cells of posterior midgut and gastric caecae. The binding of digoxigenin-labeled Cry4A (DIG-Cry4A) to the apical microvilli was almost abolished in the presence of excess unlabeled Cry4A, suggesting that the binding of Cry4A to the microvilli was specific. Several Cry4A-specific binding proteins were detected using the ligand blotting technique with DIG-Cry4A. Moreover, an insertion assay was done, where the binding of DIG-Cry4A to the BBMVs was completely irreversible and did not compete with excess unlabeled Cry4A. On the basis of these results, we propose a schematic interpretation for the binding process of Cry4A.  相似文献   

2.
Cry4A is a dipteran-specific δ-endotoxin produced by Bacillus thuringiensis, and toxic to Culex pipiens (mosquito) larvae. The immunohistochemical staining of the midgut sections of C. pipiens larvae revealed that Cry4A bound in vitro and in vivo to the microvilli of the epithelial cells of posterior midgut and gastric caecae. The binding of digoxigenin-labeled Cry4A (DIG-Cry4A) to the apical microvilli was almost abolished in the presence of excess unlabeled Cry4A, suggesting that the binding of Cry4A to the microvilli was specific. Several Cry4A-specific binding proteins were detected using the ligand blotting technique with DIG-Cry4A. Moreover, an insertion assay was done, where the binding of DIG-Cry4A to the BBMVs was completely irreversible and did not compete with excess unlabeled Cry4A. On the basis of these results, we propose a schematic interpretation for the binding process of Cry4A.  相似文献   

3.
Disruption of the Ha_BtR (a cadherin gene) is genetically linked to resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in the GYBT strain of Helicoverpa armigera. Brush border membrane vesicles (BBMVs) prepared from midguts of both the Cry1Ac-resistant GYBT strain (homozygous for a deletion knockout of Ha_BtR) and the susceptible GY strain (homozygous for the wild type of Ha_BtR) possessed saturable and specific binding ability to (125)I-Cry1Ac. The binding constant (K(d)) of the GY strain was significantly lower than that of the resistant GYBT strain, whereas their binding site concentrations (B(max)) were similar. When midgut BBMVs were reacted directly with streptavidin conjugated to horseradish peroxidase, the GY strain had very clear 120- and 85-kDa protein bands, which indicated that the 120- and 85-kDa bands are endogenous biotin-containing proteins. However, the GYBT strain almost completely lost these two biotin-containing proteins. Ligand blotting with biotinylated Cry1Ac toxin showed midgut BBMVs of the GY strain contain five protein bands of 210-, 190-, 150-, 120-, and 85-kDa, respectively, while BBMVs of the GYBT strain contain only two protein bands of 150- and 120-kDa. 120-kDa bands may consist of two proteins with coincidentally the same molecular weight (putatively, an APN and a biotin-containing protein). Our results showed that the binding pattern of Cry1Ac to midgut BBMVs of H. armigera was altered quantitatively and qualitatively by knockout of Ha_BtR. There are multiple Cry1Ac-binding proteins in the midgut of susceptible H. armigera, but only the Ha_BtR can be considered as a putative functional receptor of Cry1Ac. Possible involvement of other receptor proteins in the intoxication process in vivo could not be excluded.  相似文献   

4.
The Cry1Ab δ-endotoxin V171C mutant protein exhibits a 25-fold increase in toxicity against Lymantria dispar, which correlates with a faster rate of partitioning into the midgut membrane and slightly decreased protein stability. This is an insect-specific mechanism; similar results were not observed in Manduca sexta, another Cry1Ab δ-endotoxin-susceptible insect.  相似文献   

5.
Bacillus thuringiensis protein delta-endotoxins are toxic to a variety of different insect species. Larvicidal potency depends on the completion of a number of steps in the mode of action of the toxin. Here, we investigated the role of proteolytic processing in determining the potency of the B. thuringiensis Cry1Ac delta-endotoxin towards Pieris brassicae (family: Pieridae) and Mamestra brassicae (family: Noctuidae). In bioassays, Cry1Ac was over 2,000 times more active against P. brassicae than against M. brassicae larvae. Using gut juice purified from both insects, we processed Cry1Ac to soluble forms that had the same N terminus and the same apparent molecular weight. However, extended proteolysis of Cry1Ac in vitro with proteases from both insects resulted in the formation of an insoluble aggregate. With proteases from P. brassicae, the Cry1Ac-susceptible insect, Cry1Ac was processed to an insoluble product with a molecular mass of approximately 56 kDa, whereas proteases from M. brassicae, the non-susceptible insect, generated products with molecular masses of approximately 58, approximately 40, and approximately 20 kDa. N-terminal sequencing of the insoluble products revealed that both insects cleaved Cry1Ac within domain I, but M. brassicae proteases also cleaved the toxin at Arg423 in domain II. A similar pattern of processing was observed in vivo. When Arg423 was replaced with Gln or Ser, the resulting mutant toxins resisted degradation by M. brassicae proteases. However, this mutation had little effect on toxicity to M. brassicae. Differential processing of membrane-bound Cry1Ac was also observed in qualitative binding experiments performed with brush border membrane vesicles from the two insects and in midguts isolated from toxin-treated insects.  相似文献   

6.
Plutella xylostella strain resistant (PXR) to Bacillus thuringiensis Cry1Ac toxin was not killed at even more than 1000 μg Cry1Ac/g diet but killed by Cry1Ab at 0.5 μg/g diet. In contrast, susceptible strain (PXS) was killed by Cry1Ac at 1 μg/g diet. Cy3-labeld Cry1A(s) binding to brush border membrane vesicles (BBMV) prepared from both strains were analyzed with direct binding assay. The Kd value of Cry1Aa to both BBMV was almost identical: 213.2 and 205.8 nM, and 263.5 and 265.0 nM for Cry1Ac. The highest Kd values were in Cry1Ab which showed most effective insecticidal activity in PXS and PXR, 2126 and 2463 nM, respectively. These results clearly showed that the BBMV from PXR and PXS could equally bind to Cry1Ac. The binding between BBMV and Cy3-labeled Cry1Ac was inhibited only by anti-175 kDa cadherin-like protein (CadLP) and -252 kDa protein antisera, but not by anti-120 kDa aminopeptidase. This supports that resistance in PXR resulted from the abortion of pore formation after the binding of Cry1Ac to the BBMV. And furthermore, the importance of 175K CadLP and P252 proteins in those bindings was suggested. We briefly discuss possible mechanisms of the resistance.  相似文献   

7.
8.
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when (125)I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144.  相似文献   

9.
Proteins in the brush border membrane (BBM) of the midgut binding to the insecticidal Cry1Ac toxin from Bacillus thuringiensis were investigated to examine the lower sensitivity of Bombyx mori to Cry1Ac, and new aminopeptidase N that bound to Cry1Ac was discovered. DEAE chromatography of Triton X-100-soluble BBM proteins from the midgut revealed 96-kDa aminopeptidase that bound to Cry1Ac. The enzyme was purified to homogeneity and estimated to be a 96.4-kDa molecule on a silver-stained SDS-PAGE gel. However, the native protein was eluted as a single peak corresponding to approximately 190-kDa on gel filtration and gave a single band on native PAGE. The enzyme was determined to be an aminopeptidase N (APN96) from its substrate specificity. Antiserum to class 3 B. mori APN (BmAPN3) recognized APN96, but peptide mass fingerprinting revealed that 54% of the amino acids of matched peptides were identical to those of BmAPN3, suggesting that APN96 was a novel isoform of the APN3 family. On ligand blots, APN96 bound to Cry1Ac but not Cry1Aa or Cry1Ab, and the interaction was inhibited by GalNAc. K(D) of the APN96-Cry1Ac interaction was determined to be 1.83 +/- 0.95 microM. The lectin binding assay suggested that APN96 had an N-linked bi-antennal oligosaccharide or an O-linked mucin type one. The role of APN96 was discussed in relation to the insensitivity of B. mori to Cry1Ac.  相似文献   

10.
Pore formation constitutes a key step in the mode of action of Bacillus thuringiensis delta-endotoxins and various activated Cry toxins have been shown to form ionic channels in receptor-free planar lipid bilayers at high concentrations. Multiple conductance levels have been observed with several toxins, suggesting that the channels result from the multimeric assembly of a variable number of toxin molecules. To test this possibility, the size of the channels formed by Cry1C was estimated with the non-electrolyte exclusion technique and polyethylene glycols of various molecular weights. In symmetrical 300 mM KCl solutions, Cry1C induced channel activity with 15 distinct conductance levels ranging from 21 to 246 pS and distributed in two main conductance populations. Both the smallest and largest conductance levels and the mean conductance values of both populations were systematically reduced in the presence of polyethylene glycols with hydrated radii of up to 1.05 nm, indicating that these solutes can penetrate the pores formed by the toxin. Larger polyethylene glycols had little effect on the conductance levels, indicating that they were excluded from the pores. Our results indicate that Cry1C forms clusters composed of a variable number of channels having a similar pore radius of between 1.0 and 1.3 nm and gating synchronously.  相似文献   

11.
Cry1C domain III amino acid residues involved in specificity for beet armyworm (Spodoptera exigua) were identified. For this purpose, intradomain III hybrids between Cry1E (nontoxic) and Cry1E-Cry1C hybrid G27 (toxic) were made. Crossover points of these hybrids defined six sequence blocks containing between 1 and 19 of the amino acid differences between Cry1E and G27. Blocks B, C, D, and E of G27 were shown to be required for optimal activity against S. exigua. Block E was also required for optimal activity against the tobacco hornworm (Manduca sexta), whereas block D had a negative effect on toxicity for this insect. The mutagenesis of individual amino acids in block B identified Trp-476 as the only amino acid in this block essential, although not sufficient by itself, for full S. exigua activity. In block D, we identified a seven-amino-acid insertion in G27 that was not in Cry1E. The deletion of either one of two groups of four consecutive amino acids in this insertion completely abolished activity against S. exigua but resulted in higher activity against M. sexta. Alanine substitutions of the first group had little effect on toxicity, whereas alanine substitutions of the second group had the same effect as its deletion. These results identify groups of amino acids as well as some individual residues in Cry1C domain III, which are strongly involved in S. exigua-specific activity as well as sometimes involved in M. sexta-specific activity.  相似文献   

12.
Alzate O  You T  Claybon M  Osorio C  Curtiss A  Dean DH 《Biochemistry》2006,45(45):13597-13605
The delta-endotoxin family of toxic proteins represents the major component of the insecticidal capability of the bacterium Bacillus thuringiensis. Domain I of the toxins, which is largely alpha-helical, has been proposed to unfold at protein entry into the membrane of a target insect, following models known as the penknife and umbrella models. We extended the analysis of a previous work in which four disulfide bridges were constructed in domain I of the Cry1Aa delta-endotoxin that putatively prevented unfolding during membrane partitioning. Using bioassays and voltage clamping of whole insect midgut instead of artificial lipid bilayers, it was found that, while toxicity and inhibition of the short-circuit current were reduced, only one of the disulfide bridges eliminated the activity of the toxins in the insect midgut membrane, and in that case, the loss of toxicity was due to the single amino acid substitution, R99C. It is proposed that at least alpha helices 4, 5, 6, and 7 and domain II partition in the midgut membranes of target insects, in support of an insertion model in which the whole protein translocates into the midgut membrane.  相似文献   

13.
The crystal insecticidal proteins from Bacillus thuringiensis are modular proteins comprised of three domains connected by single linkers. Domain I is a seven alpha-helix bundle, which has been involved in membrane insertion and pore formation activity. Site-directed mutagenesis has contributed to identify regions that might play an important role in the structure of the pore-forming domain within the membrane. There are several evidences that support that the hairpin alpha4-alpha5 inserts into the membrane in an antiparallel manner, while other helices lie on the membrane surface. We hypothesized that highly conserved residues of alpha5 could play an important role in toxin insertion, oligomerization and/or pore formation. A total of 15 Cry1Ab mutants located in six conserved residues of Cry1Ab, Y153, Y161, H168, R173, W182 and G183, were isolated. Eleven mutants were located within helix alpha5, one mutant was located in the loop alpha4-alpha5 and three mutants, W182P, W182I and G183C, were located in the loop alpha5-alpha6. Their effect on binding, K(+) permeability and toxicity against Manduca sexta larvae was analyzed and compared. The results provide direct evidence that some residues located within alpha5 have an important role in stability of the toxin within the insect gut, while some others also have an important role in pore formation. The results also provide evidence that conserved residues within helix alpha5 are not involved in oligomer formation since mutations in these residues are able to make pores in vitro.  相似文献   

14.
Receptor binding plays an important role in determining host specificity of the Bacillus thuringiensis Cry delta-endotoxins. Mutations in domains II and III have suggested the participation of certain residues in receptor recognition and insect specificity. In the present study, we expressed the cloned domain II-III fragment of Cry4Ba and examined its binding characteristics to mosquito-larval midgut proteins. The 43-kDa Cry4Ba-domain II-III protein over-expressed in Escherichia coli as inclusion bodies was only soluble when carbonate buffer, pH 10.0 was supplemented with 4 M urea. After renaturation via stepwise dialysis and subsequent purification, the refolded domain II-III protein, which specifically reacts with anti Cry4Ba-domain III monoclonal antibody, predominantly exists as a beta-sheet structure determined by circular dichroism spectroscopy. In vitro binding analysis to both histological midgut tissue sections and brush border membrane proteins prepared from susceptible Aedes aegypti mosquito-larvae revealed that the isolated Cry4Ba-domain II-III protein showed binding functionality comparable to the 65-kDa full-length active toxin. Altogether, the data present the 43-kDa Cry4Ba fragment comprising domains II and III that was produced in isolation was able to retain its receptor-binding characteristics to the target larval midgut proteins.  相似文献   

15.
Cry1 delta-endotoxins of Bacillus thuringiensis are generally active against lepidopteran insects, but Cry1Ba and Cry1Ia have additional, though low, levels of activity against coleopterans such as the Colorado potato beetle. Here we report the construction of Cry1Ba/Cry1Ia hybrid toxins which have increased activities against this insect species.  相似文献   

16.
Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth (Plutella xylostella) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that Cry1Ja shares binding sites with Cry1A toxins. We tested this hypothesis in six moth and butterfly species, each from a different family: Cacyreus marshalli (Lycaenidae), Lobesia botrana (Tortricidae), Manduca sexta (Sphingidae), Pectinophora gossypiella (Gelechiidae), P. xylostella (Plutellidae), and Spodoptera exigua (Noctuidae). Although the extent of competition varied among species, experiments with biotinylated Cry1Ja and radiolabeled Cry1Ac showed that Cry1Ja and Cry1Ac competed for binding sites in all six species. A recent report also indicates shared binding sites for Cry1Ja and Cry1A toxins in Heliothis virescens (Noctuidae). Thus, shared binding sites for Cry1Ja and Cry1A occur in all lepidopteran species tested so far.  相似文献   

17.
Three types of binding assays were used to study the binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to brush border membrane vesicle (BBMV) membranes and a purified putative receptor of the target insect Manduca sexta. Using hybrid proteins consisting of Cry1Ac and the related Cry1C protein, it was shown that domain III of Cry1Ac is involved in specificity of binding as observed by all three techniques. In ligand blotting experiments using SDS-PAGE-separated BBMV proteins as well as the purified putative receptor aminopeptidase N (APN), the presence of domain III of Cry1Ac in a hybrid with Cry1C was necessary and sufficient for specific binding to APN. Using the surface plasmon resonance (SPR) technique with immobilized APN, it was shown that the presence of domain III of Cry1Ac in a hybrid is sufficient for binding to one of the two previously identified Cry1Ac binding sites, whereas the second site requires the full Cry1Ac toxin for binding. In addition, the role of domain III in the very specific inhibition of Cry1Ac binding by the amino sugar N-acetylgalactosamine (GalNac) was determined. Both in ligand blotting and in surface plasmon resonance experiments, as well as in binding assays using intact BBMVs, it was shown that the presence of domain III of Cry1Ac in a toxin molecule is sufficient for the inhibition of binding by GalNAc. These and other results strongly suggest that domain III of delta-endotoxins play a role in insect specificity through their involvement in specific binding to insect gut epithelial receptors.  相似文献   

18.
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices 1 and 2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the 1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway.  相似文献   

19.
In order to test our hypothesis that Bacillus thuringiensis delta-endotoxin Cry1Ca domain III functions as a determinant of specificity for Spodoptera exigua, regardless of the origins of domains I and II, we have constructed by cloning and in vivo recombination a collection of hybrid proteins containing domains I and II of various Cry1 toxins combined with domain III of Cry1Ca. Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ea, and Cry1Fa all become more active against S. exigua when their domain III is replaced by (part of) that of Cry1Ca. This result shows that domain III of Cry1Ca is an important and versatile determinant of S. exigua specificity. The toxicity of the hybrids varied by a factor of 40, indicating that domain I and/or II modulate the activity as well. Cry1Da-Cry1Ca hybrids were an exception in that they were not significantly active against S. exigua or Manduca sexta, whereas both parental proteins were highly toxic. Incidentally, in a Cry1Ba-Cry1Ca hybrid, Cry1Ca domain III can also strongly increase toxicity for M. sexta.  相似文献   

20.
We determined that Bacillus thuringiensis Cry1Ac and Cry1Fa delta-endotoxins recognize the same 110, 120 and 170 kDa aminopeptidase N (APN) molecules in brush border membrane vesicles (BBMV) from Heliothis virescens. The 110 kDa protein, not previously identified as an APN, contained a variant APN consensus sequence identical to that found in Helicoverpa punctigera APN 2. PCR amplification of H. virescens cDNA based on this sequence and a conserved APN motif yielded a 0.9 kb product that has 89% sequence homology with H. punctigera APN 2. Western blots revealed that the 110 kDa molecule was not recognized by soybean agglutinin, indicating the absence of GalNAc. A 125I labeled-Cry1Ac domain III mutant (509QNR(511)-AAA) that has an altered GalNAc binding pocket (Lee et al., Appl. Environ. Microbiol. 65 (1999) 4513) showed abolished binding to the 120 APN, reduced binding to the 170 kDa APN, and enhanced binding to the 110 kDa APN. Periodate treated H. virescens BBMV blots were also probed with 125I labeled-Cry1Ac and 509QNR(511)-AAA toxins. Both toxins still recognized the 110 kDa APN and a >210 kDa molecule which may be a cadherin-like protein. Additionally, 125I-(509)QNR(511)-AAA recognized periodate treated 170 kDa APN. Results indicate that the 110 kDa APN is distinct from other Cry1 toxin binding APNs and may be the first described Cry1Ac-binding APN that does not contain GalNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号