共查询到20条相似文献,搜索用时 15 毫秒
1.
Keh-Ming Wu Ling-Hui Li Jing-Jou Yan Nina Tsao Tsai-Lien Liao Hui-Chi Tsai Chang-Phone Fung Hsiang-Ju Chen Yen-Ming Liu Jin-Tung Wang Chi-Tai Fang Shan-Chwen Chang Hung-Yu Shu Tze-Tze Liu Ying-Tsong Chen Yih-Ru Shiau Tsai-Ling Lauderdale Ih-Jen Su Ralph Kirby Shih-Feng Tsai 《Journal of bacteriology》2009,191(14):4492-4501
Nosocomial infections caused by antibiotic-resistant Klebsiella pneumoniae are emerging as a major health problem worldwide, while community-acquired K. pneumoniae infections present with a range of diverse clinical pictures in different geographic areas. In particular, an invasive form of K. pneumoniae that causes liver abscesses was first observed in Asia and then was found worldwide. We are interested in how differences in gene content of the same species result in different diseases. Thus, we sequenced the whole genome of K. pneumoniae NTUH-K2044, which was isolated from a patient with liver abscess and meningitis, and analyzed differences compared to strain MGH 78578, which was isolated from a patient with pneumonia. Six major types of differences were found in gene clusters that included an integrative and conjugative element, clusters involved in citrate fermentation, lipopolysaccharide synthesis, and capsular polysaccharide synthesis, phage-related insertions, and a cluster containing fimbria-related genes. We also conducted comparative genomic hybridization with 15 K. pneumoniae isolates obtained from community-acquired or nosocomial infections using tiling probes for the NTUH-K2044 genome. Hierarchical clustering revealed three major groups of genomic insertion-deletion patterns that correlate with the strains'' clinical features, antimicrobial susceptibilities, and virulence phenotypes with mice. Here we report the whole-genome sequence of K. pneumoniae NTUH-K2044 and describe evidence showing significant genomic diversity and sequence acquisition among K. pneumoniae pathogenic strains. Our findings support the hypothesis that these factors are responsible for the changes that have occurred in the disease profile over time.Klebsiella pneumoniae is a gram-negative bacterium that belongs to the gamma subdivision of the class Proteobacteria and exhibits relatively close genetic relatedness to other genera of the Enterobacteriaceae, including Escherichia, Salmonella, Shigella, and Yersinia (2). The conspicuous difference between K. pneumoniae and the other enterobacteria is the presence of a thick polysaccharide capsule, which is thought to be a significant virulence factor and to help the bacterium avoid phagocytosis (13). Infections caused by K. pneumoniae are seen throughout the world. This organism is a major cause of urinary tract infection and an important source of nosocomial infection (39). Moreover, K. pneumoniae is emerging worldwide as a major cause of bacteremia and drug-resistant infections (25, 38).The clinical pattern of K. pneumoniae infection in humans has changed since this organism was discovered (19, 20) more than 100 years ago. Until the 1960s, K. pneumoniae was an important cause of community-acquired pneumonia in the United States (8) and elsewhere. However, the incidence of this type of infection has dropped to 1 to 3% in the United States and Europe, and hospital-acquired K. pneumoniae infection now predominates (22, 39, 48). The global pattern of community-acquired K. pneumoniae bacteremia varies with geographical area (25). In the United States, Europe, Australia, and Argentina, this condition is associated with urinary tract infection, vascular catheters, and cholangitis. In Asia and South Africa, classic K. pneumoniae pneumonia still exists (25) and has remained important over the past two decades. At the same time, an invasive form of K. pneumoniae infection, which presents as primary bacteremic liver abscesses, endophthalmitis, and meningitis, has been reported almost exclusively in Asia (21), especially in Taiwan (47, 50). Although the reasons for the preponderance of this severe invasive K. pneumoniae infection in Asia are unknown, they are likely to involve both host and microbial factors.Recent studies by several groups have investigated and debated the major virulence factors of K. pneumoniae, including the magA (16) and rmpA (53) genes, capsular serotype K1 or K2 (11, 52), and even hypermucoviscosity (16, 53). In principle, other determinants may also contribute to pyogenic K. pneumoniae infection. To gather sufficient DNA sequence information for a systematic analysis of the genetic features that underlie the diverse clinical manifestations of K. pneumoniae infections, we undertook complete genome sequencing of a pathogenic strain, NTUH-K2044, which had been isolated from a Taiwanese liver abscess case (16). NTUH-K2044 is an appropriate strain because it possesses the magA and rmpA genes, belongs to capsular serotype K1, and has high virulence and hypermucoviscosity; these factors make this isolate very suitable as a model strain for genomic studies. We additionally used a genomic shotgun array (GSA) protocol developed in our laboratory (27) to compare the genome contents of NTUH-K2044 and multiple clinical isolates. The microarray data allowed us to examine the genome evolution of K. pneumoniae and to relate the various genomic signatures to the clinical patterns seen in K. pneumoniae infections. 相似文献
2.
VB Srinivasan M Venkataramaiah A Mondal V Vaidyanathan T Govil G Rajamohan 《PloS one》2012,7(7):e41505
Background
The diffusion of antibiotics through the outer membrane is primarily affected by the porin super family, changes contribute to antibiotic resistance. Recently we demonstrated that the CpxAR two-component signaling system alters the expression of an uncharacterized porin OmpCKP, to mediate antimicrobial resistance in K. pneumoniae.Principal Findings
In this study, functional characterization of the putative porin OmpCKP (denoted kpnO) with respect to antimicrobial susceptibility and virulence was evaluated by generating an isogenic mutant, ΔkpnO in a clinical isolate of K. pneumoniae. Estimation of uronic acid content confirmed that ΔkpnO produced ∼2.0 fold lesser capsular polysaccharide than the wild-type. The ΔkpnO displayed higher sensitivity to hyper osmotic and bile conditions. Disruption of kpnO increased the susceptibility of K. pneumoniae to oxidative and nitrostative stress by ∼1.6 fold and >7 fold respectively. The loss of the Klebsiella porin led to an increase in the minimum inhibitory concentration of tetracycline (3-fold), nalidixic acid (4-fold), tobramycin (4-fold), streptomycin (10-fold), and spectinomycin (10-fold), which could be restored following complementation. The single deletion of kpnO reduced the survival of the pathogen by 50% when exposed to disinfectants. In Caenorhabditis elegans model, the kpnO mutant exhibited significantly (P<0.01) lower virulence. To dissect the role of PhoBR signaling system in regulating the expression of the kpnO, a phoB KP isogenic mutant was constructed. The phoB KP mutant exhibited impaired gastrointestinal stress response and decreased antimicrobial susceptibility. The mRNA levels of kpnO were found to be 4-fold less in phoB KP mutant compared to wild type. A regulatory role of PhoBKP for the expression of kpnO was further supported by the specific binding of PhoBKP to the putative promoter of kpnO.Conclusions and Significance
Loss of PhoBR regulated porin KpnO resulted in increased antimicrobial resistance, increased susceptibility to gastrointestinal stress, and reduced virulence in K. pneumoniae NTUH-K2044. 相似文献3.
Background
Klebsiella pneumoniae is a Gram-negative, non-motile, facultative anaerobe belonging to the Enterobacteriaceae family of the γ-Proteobacteria class in the phylum Proteobacteria. Multidrug resistant K. pneumoniae have caused major therapeutic problems worldwide due to emergence of extended-spectrum β-lactamase producing strains. Two-component systems serve as a basic stimulus-response coupling mechanism to allow organisms to sense and respond to changes in many different environmental conditions including antibiotic stress.Principal Findings
In the present study, we investigated the role of an uncharacterized cpxAR operon in bacterial physiology and antimicrobial resistance by generating isogenic mutant (ΔcpxAR) deficient in the CpxA/CpxR component derived from the hyper mucoidal K1 strain K. pneumoniae NTUH-K2044. The behaviour of ΔcpxAR was determined under hostile conditions, reproducing stresses encountered in the gastrointestinal environment and deletion resulted in higher sensitivity to bile, osmotic and acid stresses. The ΔcpxAR was more susceptible to β-lactams and chloramphenicol than the wild-type strain, and complementation restored the altered phenotypes. The relative change in expression of acrB, acrD, eefB efflux genes were decreased in cpxAR mutant as evidenced by qRT-PCR. Comparison of outer membrane protein profiles indicated a conspicuous difference in the knock out background. Gel shift assays demonstrated direct binding of CpxRKP to promoter region of ompC KP in a concentration dependent manner.Conclusions and Significance
The Cpx envelope stress response system is known to be activated by alterations in pH, membrane composition and misfolded proteins, and this systematic investigation reveals its direct involvement in conferring antimicrobial resistance against clinically significant antibiotics for the very first time. Overall results displayed in this report reflect the pleiotropic role of the CpxAR signaling system and diversity of the antibiotic resistome in hyper virulent K1 serotype K. pneumoniae NTUH-K2044. 相似文献4.
5.
Hye Kyeong Kwon Hyunwoo Choi Sung-Gyoo Park Woo Jin Park Do Han Kim Zee-Yong Park 《Molecules and cells》2021,44(7):500
Cardiac hypertrophic signaling cascades resulting in heart failure diseases are mediated by protein phosphorylation. Recent developments in mass spectrometry-based phosphoproteomics have led to the identification of thousands of differentially phosphorylated proteins and their phosphorylation sites. However, functional studies of these differentially phosphorylated proteins have not been conducted in a large-scale or high-throughput manner due to a lack of methods capable of revealing the functional relevance of each phosphorylation site. In this study, an integrated approach combining quantitative phosphoproteomics and cell-based functional screening using phosphorylation competition peptides was developed. A pathological cardiac hypertrophy model, junctate-1 transgenic mice and control mice, were analyzed using label-free quantitative phosphoproteomics to identify differentially phosphorylated proteins and sites. A cell-based functional assay system measuring hypertrophic cell growth of neonatal rat ventricle cardiomyocytes (NRVMs) following phenylephrine treatment was applied, and changes in phosphorylation of individual differentially phosphorylated sites were induced by incorporation of phosphorylation competition peptides conjugated with cell-penetrating peptides. Cell-based functional screening against 18 selected phosphorylation sites identified three phosphorylation sites (Ser-98, Ser-179 of Ldb3, and Ser-1146 of palladin) displaying near-complete inhibition of cardiac hypertrophic growth of NRVMs. Changes in phosphorylation levels of Ser-98 and Ser-179 in Ldb3 were further confirmed in NRVMs and other pathological/physiological hypertrophy models, including transverse aortic constriction and swimming models, using site-specific phospho-antibodies. Our integrated approach can be used to identify functionally important phosphorylation sites among differentially phosphorylated sites, and unlike conventional approaches, it is easily applicable for large-scale and/or high-throughput analyses. 相似文献
6.
7.
8.
Background
Tyrosine hydroxylase (TH) regulates dopamine (DA) bioavailability. Its product, L-DOPA, is an established treatment for Parkinson''s disease (PD), suggesting that TH regulation influences locomotion. Site-specific phosphorylation of TH at ser31 and ser40 regulates activity. No direct evidence shows that ser40 phosphorylation is the dominating mechanism of regulating TH activity in vivo, and physiologically-relevant stimuli increase L-DOPA biosynthesis independent of ser40 phosphorylation. Significant loss of locomotor activity occurs in aging as in PD, despite less loss of striatal DA or TH in aging compared to the loss associated with symptomatic PD. However, in the substantia nigra (SN), there is equivalent loss of DA or TH in aging and at the onset of PD symptoms. Growth factors increase locomotor activity in both PD and aging models and increase DA bioavailability and ser31 TH phosphorylation in SN, suggesting that ser31 TH phosphorylation status in the SN, not striatum, regulates DA bioavailability necessary for locomotor activity.Methodology and Principal Findings
We longitudinally characterized locomotor activity in young and older Brown-Norway Fischer 344 F1 hybrid rats (18 months apart in age) at two time periods, eight months apart. The aged group served as an intact and pharmacologically-naïve source of deficient locomotor activity. Following locomotor testing, we analyzed DA tissue content, TH protein, and TH phosphorylation in striatum, SN, nucleus accumbens, and VTA. Levels of TH protein combined with ser31 phosphorylation alone reflected inherent differences in DA levels among the four regions. Measures strictly pertaining to locomotor activity initiation significantly correlated to DA content only in the SN. Nigral TH protein and ser31 phosphorylation together significantly correlated to test subject''s maximum movement number, horizontal activity, and duration.Conclusions/Significance
Together, these results show ser31 TH phosphorylation regulates DA bioavailability in intact neuropil, its status in the SN may regulate locomotor activity generation, and it may represent an accurate target for treating locomotor deficiency. They also show that neurotransmitter regulation in cell body regions can mediate behavioral outcomes and that ser31 TH phosphorylation plays a role in behaviors dependent upon catecholamines, such as dopamine. 相似文献9.
Not only sucrose but the five isomeric alpha-D-glucosyl-D-fructoses trehalulose, turanose, maltulose, leucrose, and palatinose are utilized by Klebsiella pneumoniae as energy sources for growth, thereby undergoing phosphorylation by a phosphoenolpyruvate-dependent phosphotransferase system uniformly at 0-6 of the glucosyl moiety. Similarly, maltose, isomaltose, and maltitol, when exposed to these conditions, are phosphorylated regiospecifically at O-6 of their non-reducing glucose portion. The structures of these novel compounds have been established unequivocally by enzymatic analysis, acid hydrolysis, FAB negative-ion spectrometry, and 1H and 13C NMR spectroscopy. In cells of K. pneumoniae, hydrolysis of sucrose 6-phosphate is catalyzed by sucrose 6-phosphate hydrolase from Family 32 of the glycosylhydrolase superfamily. The five 6'-O-phosphorylated alpha-D-glucosyl-fructoses are hydrolyzed by an inducible (approximately 49-50 Kda) phospho-alpha-glucosidase from Family 4 of the glycosylhydrolase superfamily. 相似文献
10.
An aminotransferase which catalyzes the final step in methionine recycling from methylthioadenosine, the conversion of alpha-ketomethiobutyrate to methionine, has been purified from Klebsiella pneumoniae and characterized. The enzyme was found to be a homodimer of 45-kDa subunits, and it catalyzed methionine formation primarily using aromatic amino acids and glutamate as the amino donors. Histidine, leucine, asparagine, and arginine were also functional amino donors but to a lesser extent. The N-terminal amino acid sequence of the enzyme was determined and found to be almost identical to the N-terminal sequence of both the Escherichia coli and Salmonella typhimurium tyrosine aminotransferases (tyrB gene products). The structural gene for the tyrosine aminotransferase was cloned from K. pneumoniae and expressed in E. coli. The deduced amino acid sequence displayed 83, 80, 38, and 34% identity to the tyrosine aminotransferases from E. coli, S. typhimurium, Paracoccus denitrificans, and Rhizobium meliloti, respectively, but it showed less than 13% identity to any characterized eukaryotic tyrosine aminotransferase. Structural motifs around key invariant residues placed the K. pneumoniae enzyme within the Ia subfamily of aminotransferases. Kinetic analysis of the aminotransferase showed that reactions of an aromatic amino acid with alpha-ketomethiobutyrate and of glutamate with alpha-ketomethiobutyrate proceed as favorably as the well-known reactions of tyrosine with alpha-ketoglutarate and tyrosine with oxaloacetate normally associated with tyrosine aminotransferases. The aminotransferase was inhibited by the aminooxy compounds canaline and carboxymethoxylamine but not by substrate analogues, such as nitrotyrosine or nitrophenylalanine. 相似文献
11.
Krittalak Chakrabandhu Sébastien Huault Jér?me Durivault Kévin Lang Ly Ta Ngoc Angelique Bole Eszter Doma Benoit Dérijard Jean-Pierre Gérard Michel Pierres Anne-Odile Hueber 《PLoS biology》2016,14(3)
Demonstrations of both pro-apoptotic and pro-survival abilities of Fas (TNFRSF6/CD95/APO-1) have led to a shift from the exclusive “Fas apoptosis” to “Fas multisignals” paradigm and the acceptance that Fas-related therapies face a major challenge, as it remains unclear what determines the mode of Fas signaling. Through protein evolution analysis, which reveals unconventional substitutions of Fas tyrosine during divergent evolution, evolution-guided tyrosine-phosphorylated Fas proxy, and site-specific phosphorylation detection, we show that the Fas signaling outcome is determined by the tyrosine phosphorylation status of its death domain. The phosphorylation dominantly turns off the Fas-mediated apoptotic signal, while turning on the pro-survival signal. We show that while phosphorylations at Y232 and Y291 share some common functions, their contributions to Fas signaling differ at several levels. The findings that Fas tyrosine phosphorylation is regulated by Src family kinases (SFKs) and the phosphatase SHP-1 and that Y291 phosphorylation primes clathrin-dependent Fas endocytosis, which contributes to Fas pro-survival signaling, reveals for the first time the mechanistic link between SFK/SHP-1-dependent Fas tyrosine phosphorylation, internalization route, and signaling choice. We also demonstrate that levels of phosphorylated Y232 and Y291 differ among human cancer types and differentially respond to anticancer therapy, suggesting context-dependent involvement of Fas phosphorylation in cancer. This report provides a new insight into the control of TNF receptor multisignaling by receptor phosphorylation and its implication in cancer biology, which brings us a step closer to overcoming the challenge in handling Fas signaling in treatments of cancer as well as other pathologies such as autoimmune and degenerative diseases. 相似文献
12.
13.
Ramy A. Fodah Jacob B. Scott Hok-Hei Tam Pearlly Yan Tia L. Pfeffer Ralf Bundschuh Jonathan M. Warawa 《PloS one》2014,9(9)
Klebsiella pneumoniae is a bacterial pathogen of worldwide importance and a significant contributor to multiple disease presentations associated with both nosocomial and community acquired disease. ATCC 43816 is a well-studied K. pneumoniae strain which is capable of causing an acute respiratory disease in surrogate animal models. In this study, we performed sequencing of the ATCC 43816 genome to support future efforts characterizing genetic elements required for disease. Furthermore, we performed comparative genetic analyses to the previously sequenced genomes from NTUH-K2044 and MGH 78578 to gain an understanding of the conservation of known virulence determinants amongst the three strains. We found that ATCC 43816 and NTUH-K2044 both possess the known virulence determinant for yersiniabactin, as well as a Type 4 secretion system (T4SS), CRISPR system, and an acetonin catabolism locus, all absent from MGH 78578. While both NTUH-K2044 and MGH 78578 are clinical isolates, little is known about the disease potential of these strains in cell culture and animal models. Thus, we also performed functional analyses in the murine macrophage cell lines RAW264.7 and J774A.1 and found that MGH 78578 (K52 serotype) was internalized at higher levels than ATCC 43816 (K2) and NTUH-K2044 (K1), consistent with previous characterization of the antiphagocytic properties of K1 and K2 serotype capsules. We also examined the three K. pneumoniae strains in a novel BALB/c respiratory disease model and found that ATCC 43816 and NTUH-K2044 are highly virulent (LD50<100 CFU) while MGH 78578 is relatively avirulent. 相似文献
14.
Fuursted K Schøler L Hansen F Dam K Bojer MS Hammerum AM Dagnæs-Hansen F Olsen A Jasemian Y Struve C 《Microbes and infection / Institut Pasteur》2012,14(2):155-158
The aim of the study was to compare and evaluate virulence in five strains of Klebsiella pneumoniae, including an isolate carrying New Delhi metallo-beta-lactamase-1 (NDM-1). In vivo virulence was assessed using a murine sepsis model and using the nematode Caenorhabditis elegans killing model, and in vitro virulence by assessing various virulence factors. The NDM-1 carrying K. pneumoniae isolate was the most virulent in the murine sepsis model but there was no clear cut correlation to in vitro virulence factors or killing in C. elegans. It is concluded that K. pneumoniae carrying NDM-1 have an intrinsic virulence potential, which in coexistence with its multiresistance could promote and partly explain its epidemiological success. 相似文献
15.
16.
17.
Hanne A. Askautrud Elisabet Gjernes Gjermund Gunnes Marit Sletten Douglas T. Ross Anne Lise B?rresen-Dale Nina Iversen Michael A. Tranulis Eirik Frengen 《PloS one》2014,9(1)
N-myc downstream-regulated gene 1 (NDRG1) is induced by cellular stress such as hypoxia and DNA damage, and in humans, germ line mutations cause Charcot-Marie-Tooth disease. However, the cellular roles of NDRG1 are not fully understood. Previously, NDRG1 was shown to mediate doxorubicin resistance under hypoxia, suggesting a role for NDRG1 in cell survival under these conditions. We found decreased apoptosis in doxorubicin-treated cells expressing NDRG1 shRNAs under normoxia, demonstrating a requirement for NDRG1 in apoptosis in breast epithelial cells under normal oxygen pressure. Also, different cellular stress regimens, such as hypoxia and doxorubicin treatment, induced NDRG1 through different stress signalling pathways. We further compared expression profiles in human breast epithelial cells ectopically over-expressing NDRG1 with cells expressing NDRG1 shRNAs in order to identify biological pathways where NDRG1 is involved. The results suggest that NDRG1 may have roles connected to vesicle transport. 相似文献
18.
Microcin-mediated interactions between Klebsiella pneumoniae and Escherichia coli strains 总被引:5,自引:0,他引:5
Amensal indirect interactions between a Klebsiella pneumoniae microcin-producing strain and several Escherichia coli strains, all of intestinal origin, were studied. Mixed batch cultures of both microcin-producing and microcin-sensitive strains showed that microcin production and excretion into the medium allowed the producer strain to prevail over sensitive strains, even when initial competition conditions were highly unfavourable for the producer. Mixed cultures also showed the production of a microcin-antagonist by the same microcin-producing strain when the nutrients in the medium had been depleted. The antagonist apparently promoted the viability of sensitive cells already damaged by microcin. These results have likely ecological implications. 相似文献
19.
We demonstrated that Klebsiella pneumoniae and Klebsiella oxytoca possess a selective haemolytic activity on rabbit erythrocytes. Thirty one Klebsiella strains (18 strains of K. pneumoniae and 13 strains of K. oxytoca) were isolated from hospitalized patients. The liquid (Trypcase-soy broth--TSB) and solid (Trypcase-soy agar--TSA) medium, containing the red cells were used for the tests. All the screened strains showed a haemolytic effect on rabbit erythrocytes, provided that the supernatants of the cultures were preincubated with beta-mercaptoethanol or calcium chloride. There was no human and sheep erythrocyte lysis. 相似文献
20.
Jean-Philippe Lavigne Gaelle Cuzon Christophe Combescure Gisèle Bourg Albert Sotto Patrice Nordmann 《PloS one》2013,8(7)
Klebsiella pneumoniae carbapenemase (KPC) is a carbapenemase increasingly reported worldwide in Enterobacteriaceae. The aim of this study was to analyze the virulence of several KPC-2-producing K. pneumoniae isolates. The studied strains were (i) five KPC-2 clinical strains from different geographical origins, belonging to different ST-types and possessing plasmids of different incompatibility groups; (ii) seven transformants obtained after electroporation of either these natural KPC plasmids or a recombinant plasmid harboring only the bla
KPC-2 gene into reference strains K. pneumoniae ATCC10031/; and (iii) five clinical strains cured of plasmids. The virulence of K. pneumoniae isolates was evaluated in the Caenorhabditis elegans model. The clinical KPC producers and transformants were significantly less virulent (LT50: 5.5 days) than K. pneumoniae reference strain (LT50: 4.3 days) (p<0.01). However, the worldwide spread KPC-2 positive K. pneumoniae ST258 strains and reference strains containing plasmids extracted from K. pneumoniae ST258 strains had a higher virulence than KPC-2 strains belonging to other ST types (LT50: 5 days vs. 6 days, p<0.01). The increased virulence observed in cured strains confirmed this trend. The bla
KPC-2 gene itself was not associated to increased virulence. CIP53153相似文献