共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Developmental expression of fibrillarin and U3 snRNA in Xenopus laevis. 总被引:10,自引:0,他引:10
M Caizergues-Ferrer C Mathieu P Mariottini F Amalric F Amaldi 《Development (Cambridge, England)》1991,112(1):317-326
Fibrillarin is one of the protein components that together with U3 snRNA constitute the U3 snRNP, a small nuclear ribonucleoprotein particle involved in ribosomal RNA processing in eucaryotic cells. Using an antifibrillarin antiserum for protein detection and a fibrillarin cDNA and a synthetic oligonucleotide complementary to U3 snRNA as hybridization probes, the expression of these two components has been studied during Xenopus development. Fibrillarin mRNA is accumulated early in oogenesis, like many other messengers, and translated during oocyte growth. Fibrillarin protein is thus progressively accumulated throughout oogenesis to be assembled with U3 snRNA and used for ribosome production in the amplified nucleoli. After fertilization, the amount of U3 snRNA decreases while the maternally accumulated fibrillarin mRNA is maintained and utilized to produce more protein. After the mid-blastula transition, stored fibrillarin is assembled with newly synthesized U3 snRNA and becomes localized in the prenucleolar bodies and reforming nucleoli. 相似文献
3.
Drosophila melanogaster U1 snRNA genes 总被引:6,自引:0,他引:6
We have isolated and characterized a recombinant which contains a Drosophila melanogaster U1 small nuclear RNA (snRNA) gene colinear with the published snRNA sequence. Southern hybridizations of the fly genomic DNA, using as probe a plasmid containing only the coding region of the gene, shows that the fly contains at most three or four genes and very few related sequences for the small nuclear U1 RNA. These genes were localized by in situ hybridization at different chromosomal loci and show no spatial relationship to the U2 snRNA genes. 相似文献
4.
Isolation and characterization of developmentally regulated sea urchin U2 snRNA genes 总被引:5,自引:0,他引:5
Genes encoding the U2 snRNA have been isolated from the sea urchins, Strongylocentrotus purpuratus and Lytechinus variegatus. Representatives of tandemly repeated gene sets have been isolated from both sea urchin species and a unique U2 gene has also been isolated from L. variegatus. The sequence of the U2 snRNA encoded by the tandemly repeated genes differs in two nucleotides between S. purpuratus and L. variegatus. The unique U2 gene from L. variegatus encodes the same U2 RNA as the tandemly repeated genes. There is a change in the U2 genes expressed between morula and pluteus embryos as judged by a change in the U2 RNA sequence in S. purpuratus embryos. The tandemly repeated genes were expressed at a higher rate in blastula than in gastrula stage relative to the single-copy gene, when the two genes were injected into sea urchin zygotes. 相似文献
5.
6.
Sequence and expression of potato U2 snRNA genes. 总被引:3,自引:2,他引:3
7.
8.
9.
A cluster of Xenopus laevis U7 snRNA genes has been isolated and sequenced. The gene structure is more compact than, but otherwise comparable to, the major U snRNA genes since the distal sequence element (DSE) is located only 4 nt upstream of the PSE. The corresponding RNA is present in the oocyte and accumulates early in oogenesis. 相似文献
10.
11.
12.
Functional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5' stem-loop of U4 snRNA. 下载免费PDF全文
S Nottrott K Hartmuth P Fabrizio H Urlaub I Vidovic R Ficner R Lührmann 《The EMBO journal》1999,18(21):6119-6133
Activation of the spliceosome for splicing catalysis requires the dissociation of U4 snRNA from the U4/U6 snRNA duplex prior to the first step of splicing. We characterize an evolutionarily conserved 15.5 kDa protein of the HeLa [U4/U6.U5] tri-snRNP that binds directly to the 5' stem-loop of U4 snRNA. This protein shares a novel RNA recognition motif with several RNP-associated proteins, which is essential, but not sufficient for RNA binding. The 15.5kD protein binding site on the U4 snRNA consists of an internal purine-rich loop flanked by the stem of the 5' stem-loop and a stem comprising two base pairs. Addition of an RNA oligonucleotide comprising the 5' stem-loop of U4 snRNA (U4SL) to an in vitro splicing reaction blocked the first step of pre-mRNA splicing. Interestingly, spliceosomal C complex formation was inhibited while B complexes accumulated. This indicates that the 15.5kD protein, and/or additional U4 snRNP proteins associated with it, play an important role in the late stage of spliceosome assembly, prior to step I of splicing catalysis. Our finding that the 15.5kD protein also efficiently binds to the 5' stem-loop of U4atac snRNA indicates that it may be shared by the [U4atac/U6atac.U5] tri-snRNP of the minor U12-type spliceosome. 相似文献
13.
Xenopus laevis U2 snRNA genes: tandemly repeated transcription units sharing 5' and 3' flanking homology with other RNA polymerase II transcribed genes 下载免费PDF全文
《The EMBO journal》1984,3(1):246
[This corrects the article on p. 1883 in vol. 2.]. 相似文献
14.
15.
The U18 small nuclear RNA (snRNA) is one of several newly discovered intron-encoded nucleolar RNAs whose function is unknown. We have studied the accumulation and function of the U18 snRNA in oocytes of the vertebrate, Xenopus laevis. The U18 snRNA contains 13 nt complementary to a highly conserved sequence in 28S ribosomal RNA (rRNA). Three oligonucleotides, selected to contain all or some of the complementary sequence, deplete the U18 snRNA upon injection into Xenopus oocytes. Injection of two of the oligonucleotides has no effect on pre-rRNA processing or ribosome transport. Injection of the third oligonucleotide does interrupt pre-18S rRNA processing, but this is due to coincidental simultaneous depletion of the U22 snRNA. The U18 snRNA is the first nucleolar snRNA that is not essential for ribosome biogenesis in vertebrates. 相似文献
16.
O'Keefe RT 《Nucleic acids research》2002,30(24):5476-5484
The U5 snRNA loop 1 is characterized by the conserved sequence G1C2C3U4U5U6Y7A8Y9 and is essential for the alignment of exons during the second step of pre-mRNA splicing in Saccharo myces cerevisiae. Despite this sequence conservation the size, rather than sequence, of loop 1 is critical for exon alignment in vitro. To determine the in vivo requirements for U5 loop 1 a library of loop 1 sequences was transformed into a yeast strain where the endogenous U5 gene was deleted. Comparison of viable mutations in loop 1 revealed that position 6 was invariant and positions 5 and 7 displayed some sequence conservation. These data indicate positions 5, 6 and 7 in loop 1 are important for U5 function in vivo. A screen for mutations that suppress the temperature-sensitive phenotype of three loop 1 mutants produced eight intragenic suppressors all containing alterations in loop 1. Further analysis of these temperature-sensitive mutants revealed that each displayed distinct cell cycle arrest phenotypes and pre-mRNA splicing inhibition patterns. The cell cycle arrest is likely attributed to inefficient splicing of α-tubulin pre-mRNA in one mutant and actin pre-mRNA in another. These results suggest that various mutations in loop 1 may affect the splicing of different pre-mRNAs in vivo. 相似文献
17.
Christopher Marshallsay Sheila Connelly Witold Filipowicz 《Plant molecular biology》1992,19(6):973-983
We have demonstrated recently that the genes encoding the U3 small nuclear RNA (snRNA) in dicot plants are transcribed by RNA polymerase III (pol III), and not RNA polymerase II (pol II) as in all other organisms studied to date. The U3 gene was the first example of a gene transcribed by different polymerases in different organisms. Based on phylogenetic arguments we proposed that a polymerase specificity change of the U3 snRNA gene promoter occurred during plant evolution. To map such an event we are examining the U3 gene polymerase specificity in other plant species. We report here the characterization of a U3 gene from wheat, a monocot plant. This gene contains the conserved promoter elements, USE and TATA, in a pol III-specific spacing seen also in a wheat U6 snRNA gene characterized in this report. Both the U3 and the U6 genes possess typical pol III termination signals but lack the cis element, responsible for 3-end formation, found in all plant pol II-specific snRNA genes. In addition, expression of the U3 gene in transfected maize protoplasts is less sensitive to -amanitin than a pol II-transcribed U2 gene. Based on these data we conclude that the wheat U3 gene is transcribed by pol III. This observation suggests that the postulated RNA polymerase specificity switch of the U3 gene took place prior to the divergence of angiosperm plants into monocots and dicots. 相似文献
18.
19.
Functional analysis of the U5 snRNA loop 1 in the second catalytic step of yeast pre-mRNA splicing. 总被引:9,自引:1,他引:9 下载免费PDF全文
The U5 snRNA loop 1 interacts with the 5' exon before the first step of pre-mRNA splicing and with the 5' and 3' exons following the first step. These U5-exon interactions are proposed to hold the exons in the correct orientation for the second step of splicing. Reconstitution of U5 snRNPs in vitro indicated that U5 loop 1-5' exon interactions are not necessary for the first catalytic step of splicing but are critical for the second step in yeast spliceosomes. We systematically made deletion and insertion mutations in loop 1 then monitored splicing activity and loop-exon interactions by cross-linking. Single nucleotide deletions or insertions in loop 1 permitted both steps of splicing. Larger insertions or deletions allowed the first step but progressively inhibited the second step. Analysis of selected loop 1 insertions and deletions by cross-linking revealed that inhibition of the second catalytic step resulted from misalignment of the 5' and 3' exons. These data indicate that the size of loop 1 is critical for proper alignment of the exons for the second catalytic step of splicing and that the 3' exon is positioned on loop 1 independently of the 5' exon. 相似文献