首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The hybrid zone between the two subspecies of mice Mus musculus domesticus and Mus musculus musculus, which has been studied extensively in Denmark, crosses Europe to the Black Sea through the Alps and the Balkans. Two hundred and seventy-nine animals were captured in 22 localities along a transect across the Balkans. The animals were characterized for seven diagnostic nuclear loci by protein electrophoresis and by restriction pattern analysis of their mitochondrial DNA. The nuclear data show a sharp transition between the two subspecies, most of the variations in allele frequencies (from 0.9 to 0.1) occurring within a 36-km section of the transect. The introgression varies from one locus to the other and is more pronounced, in terms of distance, in M. m. musculus territory. Mitochondrial DNA introgression is important but occurs in one direction only, i.e. from M. m. musculus to M. m. domesticus, while a cytoplasmic transfer from M. m. domesticus to M. m. musculus has been reported. A previous study showed that no Y chromosome introgression occurs. The different behaviour of these three types of markers could be due to the interaction between selection against hybrid genomes and meiotic recombination. Objectively, it would appear that the genes that can introgress are neutral or nearly so and have been separated from deleterious genes they were linked to by recombination. This could explain the differential introgression between autosomal loci. The mitochondrial and Y chromosomes undergo no or very little recombination and each is transmitted as a whole. Their degree of introgression is thus indicative of the intensity of selection resulting from the amount of functional differentiation between the two taxa, which seems to be strong for the Y chromosome and weak for mitochondrial DNA. We propose that the asymmetry of nuclear introgression is due to different population structures. As M. m. musculus is relatively less structured, the rapid spreading of introgressed genes would be favoured. Such a scheme, however, can hardly account for the unidirectionality of the mitochondrial flow, which could be due to sex-dependent behaviour.  相似文献   

3.
We studied mtDNA introgression across the contact zone between Mus musculus musculus and M. m. domesticus in two independent transects in the Czech Republic and Bavaria, Germany. A total of 1270 mice from 98 localities in the Czech transect and 456 mice from 41 localities in the Bavarian transect were examined for presence or absence of a Bam HI restriction site in the mt-Nd1 gene. Using this simple mtDNA marker, variants that belonged to the M. m. domesticus lineage (presence of restriction site) could be unequivocally distinguished from those belonging to the M. m. musculus lineage (absence of restriction site). The extent of introgression of mtDNA, three autosomal allozymes and the X chromosome was compared. The introgression of X markers was more limited than was that of the allozymes and mtDNA. In the Czech transect, the centre for the mtDNA cline was shifted about 3.6 km to the west relative to the X chromosome cline, with asymmetric introgression from M. m. musculus to M. m. domesticus . Interestingly, in the Bavarian transect, the centre of the mtDNA cline was shifted about 10.9 km to the east relative to the X chromosome cline, with asymmetric introgression from M. m. domesticus to M. m. musculus, opposite in direction to that observed in the Czech transect.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 363–378.  相似文献   

4.
S V Mezhzherin 《Genetika》1988,24(12):2197-2201
Genetic divergence between house mouse and gleaner mouse from different regions of Ukraine was estimated by electrophoresis at 26 loci. Four diagnostic loci were established among these species: IDH-1, Est-1,2,4. Genetic distance between species is 0.217, which is in accordance with genetic differences between other species of the genus Mus. The results obtained give evidence that house and gleaner mouse are different species.  相似文献   

5.
6.
Previous behavioural studies using inbred lines have suggested that the gene ( Abpa ) for the alpha subunit of salivary androgen-binding protein (ABP) plays a role in prezygotic isolation between house mouse Mus musculus subspecies. We tested this hypothesis in animals from wild allopatric (121 individuals from four samples) and parapatric (320 animals from 15 samples) populations sampled on the Czech–Bavarian transect across the hybrid zone between M. m. domesticus and M. m. musculus . The study did not reveal a consistent statistically significant trend of homosubspecific preferences in individual allopatric and parapatric populations. Nonetheless, the whole pattern of preference was skewed toward homosubspecific preference mostly on the M. m. musculus side of the hybrid zone. The pattern of homosubspecific preferences was stronger for the time spent sniffing than it was for the first choice of the signal (the ratio of homosubspecific vs. heterosubspecific preferences for both sexes was 6 : 2 in allopatric and 21 : 9 in parapatric populations, while the same rates were 4 : 4 and 16 : 14 for the first choice). To the extent that Y-maze tests reflect preference under wild conditions, we suggest that this slight preference may not in itself be sufficient to impede gene flow between the two subspecies and thus act as a reproductive barrier. ABP most probably participates in a complex system of subspecies-specific recognition in the hybrid zone, but the picture is far too complex at this time to allow a conclusive evaluation of the importance of this role.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 349–361.  相似文献   

7.
Seventeen genes controlling the expression of carboxylic ester hydrolases, commonly known as esterases, have been identified in the mouse Mus musculus. Seven esterase loci are found on chromosome 8, where two clusters of esterase loci occur. It seems probable that the genes within these clusters have arisen from a common ancestral gene by tandem duplication. Close linkage of esterase genes is also found in the rat, rabbit, and prairie vole. Some mouse esterases appear to be homologous with certain human esterases. The function of these nonspecific enzymes is still unknown.  相似文献   

8.
The hybrid sterility-1 (Hst1) locus at Chr 17 causes male sterility in crosses between the house mouse subspecies Mus musculus domesticus (Mmd) and M. m. musculus (Mmm). This locus has been defined by its polymorphic variants in two laboratory strains (Mmd genome) when mated to PWD/Ph mice (Mmm genome): C57BL/10 (carrying the sterile allele) and C3H (fertile allele). The occurrence of sterile and/or fertile (wild Mmm × C57BL)F1 males is evidence that polymorphism for this trait also exists in natural populations of Mmm; however, the nature of this polymorphism remains unclear. Therefore, we derived two wild-origin Mmm strains, STUS and STUF, that produce sterile and fertile males, respectively, in crosses with C57BL mice. To determine the genetic basis underlying male fertility, the (STUS × STUF)F1 females were mated to C57BL/10 J males. About one-third of resulting hybrid males (33.8%) had a significantly smaller epididymis and testes than parental animals and lacked spermatozoa due to meiotic arrest. A further one-fifth of males (20.3%) also had anomalous reproductive traits but produced some spermatozoa. The remaining fertile males (45.9%) displayed no deviation from values found in parental individuals. QTL analysis of the progeny revealed strong associations of male fitness components with the proximal end of Chr 17, and a significant effect of the central section of Chr X on testes mass. The data suggest that genetic incompatibilities associated with male sterility have evolved independently at the proximal end of Chr 17 and are polymorphic within both Mmd and Mmm genomes.  相似文献   

9.
10.
11.
The cDNA encoding for Mus musculus myoglobin (Mb) was amplified using standard RT-PCR techniques and cloned in an appropriate bacterial expression vector. For the first time, mouse Mb was recombinantly expressed in Escherichia coli cells, BL21(DE3), and purified in sufficient amounts to carry out a preliminary characterization. As shown by mass spectrometry, the protein is found in complex with glutathione, which binds the Cys residue in the topological position E9, in the proximity of the heme group. In recombinant murine Mb, azide affinities are only slightly dependent on the Cys(E9) oxidation state. This suggests that Cys(E9) does not provide a relevant contribution for the stabilization of ligands bound to the heme iron atom. Recombinant expression of M. musculus Mb might have an important role in order to investigate the eventual involvement of Cys(E9) in the new physiological roles proposed for Mb.  相似文献   

12.
Divergence of dispersal regimens has been suggested to be the selective basis for the evolutionary differentiation of agonistic phenotypes found in natural populations of house mice. Dispersal propensity may, therefore, be expected to exhibit heritable variation in wild house mice, ultimately related to motivational differences causing observable differences in agonistic behaviour. To test for heritable components in dispersal propensity in wild house mice, father–offspring regressions of dispersal latencies from residential social groups were determined in standardized seminatural social settings. To evaluate potential motivational causes of phenotypic variation in dispersal behaviour, all test animals (fathers, sons, and daughters) were scored prior to the dispersal experiment in a standardized behavioural test, at 60 d of age. Activities were monitored in a 1 m2 square test arena during 10‐min observation periods. Test arenas exhibited four equidistant openings leading to cages containing fresh, own, sibling, or foreign bedding material. The apparatus allowed for scoring anxiety, exploratory activity, and kin preference. Subsequently, test animals were exposed to a resident population in a semi‐natural enclosure providing a dispersal opportunity. Father–son regressions of dispersal latencies were significantly positive, but no significant relationship was found for daughters. Dispersal latency decreased with increasing exploratory activity scores in males, but increased in females. Anxiety as well as kin preferences did not affect dispersal propensity. Hence sex‐linked, motivational components reflect heritable social behaviour variation in male house mice that may ultimately be caused by diverging dispersal regimens.  相似文献   

13.
Three and 8 week old pigs were inoculated with Cryptosporidium muris HZ206 (Mus musculus musculus isolate), Cryptosporidium tyzerri CR2090 (M. m. musculus isolate) or C. tyzzeri CR4293 (isolate from a hybrid between Mus musculus domesticus and M. m. musculus) at a dose of 1 × 10(7) oocysts per animal. Inoculated pigs showed no detectable infection and no clinical symptoms of cryptosporidiosis during 30 days post infection (DPI), and no macroscopic changes were detected in the digestive tract following necropsy. Developmental stages were not detected in gastrointestinal tract tissue by histology or PCR throughout the duration of the experiment. The infectivity of isolates was verified on SCID mice, in which oocysts shedding started from 4 to 8 DPI. Based on our findings, it can be concluded that pigs are not susceptible to C. muris or C. tyzzeri infection.  相似文献   

14.
Thirty years after its identification, the model of chromosomal speciation in Mus musculus domesticus is reevaluated using the methods of population biology, molecular cytogenetics and functional genomics. Three main points are considered: (1) the structural predisposition of M. m. domesticus chromosomes to Robertsonian fusion; (2) the impediment of structural heterozygosity to gene flow between populations of mice with karyotypes rearranged by Robertsonian fusion and between them and populations with the standard all-acrocentric 40-chromosome karyotype; (3) the selective advantage of chromosomal novelty, essential for the attainment of homozygosis and the rapid fixation of the new karyotype in the population.  相似文献   

15.
Genetic Heterogeneity in the Indian Mus musculus   总被引:1,自引:0,他引:1  
This study deals with the characterization of 10populations of M. musculus from differentgeographical locations in India. The genetics of Indianwild mice has been completely obscure and this is thefirst report on allozyme variations in the naturalpopulation. We have used a set of 24 biochemical geneticmarkers to measure levels of diversity within and amongpopulations. The allelic frequency data indicate extreme genetic variability, which is furtherenhanced by the presence of novel alleles. Overall thespecies shows a high level of heterogenity. The highlypolymorphic central populations of M. musculus cannot be assigned to any one particularsubspecies. The allelic profiles, however, indicate agradual differentiation toward the castaneus andbatcrianus subspecies lineages.  相似文献   

16.
17.
Consomic C57BL/6 males, carrying either the Mus musculus musculus-derived C57BL/6 Y chromosome or the Mus musculus domesticus-derived Poschiavinus Y chromosome, were outcrossed to females of the inbred strains C3H/Bi and CXBH/By and to females of the random bred strain MF1/Ola. In a study at 12.5 days post coitum, gonads of XYC57 and XYPOS fetuses were assessed for the presence of testicular cords. It was found that XYPOS fetuses had a later onset of testicular development than XYC57 fetuses. Limb development, which was monitored as a measure of overall development, was unaffected by the strain of Y present. These data were supported by a longitudinal study in which the increased growth rate of the testes relative to undifferentiated gonads, was also shown to be delayed in XYPOS fetuses. The extent of the delay was estimated to be approximately 14 h. It is concluded that this delay in the onset of testicular differentiation must be caused by differences between the two Y-chromosome types, most probably allelic differences in the testis determinant Tdy.  相似文献   

18.
19.

Background

Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.

Results

We found 9634 putative autosomal CNVs across the samples affecting 6.87 % of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).

Conclusion

The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1713-z) contains supplementary material, which is available to authorized users.  相似文献   

20.
An esterase, esterase-10, in the house mouse, Mus musculus, is specific for esters of 4-methylumbelliferone and exhibits a polymorphism detectable by electrophoresis. Fifteen inbred strains and two outbred strains have been examined for this polymorphism, and two phenotypes, ES-10A and ES-10B, have been observed. Each phenotype manifests itself as a single band of enzyme activity, but under the electrophoretic conditions used the ES-10A phenotype has less anodal electrophoretic mobility than the ES-10B phenotype. In F1 hybrids (C3H/He/Lac×C57BL/Gr) a third phenotype was observed, ES-10AB, consisting of three bands of enzyme activity, two of which correspond to the parental forms and the third with intermediate mobility. The triple-band pattern in the F1 hybrids indicates that esterase-10 is a dimeric enzyme protein.This work was supported by the Medical Research Council.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号