共查询到20条相似文献,搜索用时 0 毫秒
1.
Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells 总被引:2,自引:0,他引:2
MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation. 相似文献
2.
Liane Dahm Fanny Klugmann Angeles Gonzalez-Algaba Bernhard Reuss 《Cell biology and toxicology》2010,26(6):579-591
Gap junctions (GJ) represent a cellular communication system known to influence neuronal differentiation and survival. To assess a putative role of this system for neural effects of tamoxifen (TAM) and raloxifene (RAL), we used the human teratocarcinoma cell line NTera2/D1, retinoic acid (RA)-dependent neuronal differentiation of which is regulated by gap junctions formed of connexin43 (Cx43). As demonstrated by Western blot analysis, concentrations above 1 μmol/l for TAM, and 0.1 μmol/l for RAL lead to a temporary time- and concentration-dependent increase in Cx43 immunoreactivity, which reached a peak for TAM after 1 day and for RAL after 2 days. Immunocytochemical stainings revealed the increase in Cx43 immunoreactivity to result from an accumulation in intracellular compartments such as the Golgi apparatus or lysosomes. In addition, TAM and RAL were able to prevent the RA-dependent decrease of Cx43 immunoreactivity in NTera2/D1 cells, normally observed during neuronal differentiation. This suggested a suppression of neuronal differentiation to result from these substances. According to this, treatment of NTera2/D1 cells with 10 μmol/l TAM or RAL during weeks 1 and 2 of a 6 weeks RA-driven differentiation schedule impaired, whereas treatment during weeks 5 and 6 did not impair, neuronal differentiation of these cells. Modulation of GJ coupling between NTera2/D1 cells by TAM and RAL seems therefore to perturb early neuronal differentiation, whereas differentiated neurons in the mature brain seem to be not affected. These effects could be of importance for actions of TAM and RAL on early embryonic steps of nervous system formation. 相似文献
3.
《Neurochemistry international》2010,56(8):768-774
The transient receptor potential vanilloid subtype 1 (TRPV1) is a Ca2+-permeable channel primarily expressed in dorsal root ganglion neurons. Besides its function in thermogenic nociception and neurogenic inflammation, TRPV1 is involved in cell migration, cytoskeleton re-organisation and in neuronal guidance. To explore the TRPV1 level and activity during conditions for neuronal maturation, TRPV1-expressing SHSY5Y neuroblastoma cells were differentiated into a neuronal phenotype using all-trans-retinoic acid (RA). We show that RA highly up-regulated the total and cell surface TRPV1 protein expression but the TRPV1 mRNA level was unaffected. The up-regulated receptors were localised to the cell bodies and the developed neurites. Furthermore, RA increased both the basal intracellular free Ca2+ concentration by 30% as well as the relative capsaicin-induced Ca2+ influx. The results show that TRPV1 protein expression increases during RA-induced differentiation in vitro, which generates an altered intracellular Ca2+ homeostasis. 相似文献
4.
Johanna EL Andaloussi-Lilja Jessica Lundqvist Anna Forsby 《Neurochemistry international》2009,55(8):768-774
The transient receptor potential vanilloid subtype 1 (TRPV1) is a Ca2+-permeable channel primarily expressed in dorsal root ganglion neurons. Besides its function in thermogenic nociception and neurogenic inflammation, TRPV1 is involved in cell migration, cytoskeleton re-organisation and in neuronal guidance. To explore the TRPV1 level and activity during conditions for neuronal maturation, TRPV1-expressing SHSY5Y neuroblastoma cells were differentiated into a neuronal phenotype using all-trans-retinoic acid (RA). We show that RA highly up-regulated the total and cell surface TRPV1 protein expression but the TRPV1 mRNA level was unaffected. The up-regulated receptors were localised to the cell bodies and the developed neurites. Furthermore, RA increased both the basal intracellular free Ca2+ concentration by 30% as well as the relative capsaicin-induced Ca2+ influx. The results show that TRPV1 protein expression increases during RA-induced differentiation in vitro, which generates an altered intracellular Ca2+ homeostasis. 相似文献
5.
6.
Culvenor JG Evin G Cooney MA Wardan H Sharples RA Maher F Reed G Diehlmann A Weidemann A Beyreuther K Masters CL 《Experimental cell research》2000,255(2):192-206
Mutations in the presenilin 1 and 2 (PS1 and PS2) genes cause most cases of early onset Alzheimer's disease. The genes encode two homologous multipass membrane proteins. Since the endogenous expression of PS2 has been poorly analyzed to date, we studied PS2 expression and localization in cultured human neuroblastoma cells and mouse neuronal cells. PS2 was mainly detected as a full-length protein of about 52 kDa in these cells and in brain, in contrast to PS1 that is mainly detected as endoproteolytic N-terminal and C-terminal fragments. Using immunofluorescence we found that like PS1, PS2 colocalized with markers of the endoplasmic reticulum-Golgi intermediate compartment, ERGIC-53 and beta-COP. Double labeling for PS1 and PS2 indicated that both proteins are colocalized in neuroblastoma SH-SY5Y cells. To study PS2 expression during differentiation, mouse embryonic carcinoma P19 cells were treated with retinoic acid. We found minimal PS2 expression in undifferentiated cells, an increase from day 2, and a maximum at day 8 after treatment. PS1 expression remained constant during this period. The differential expression of PS1 and PS2 within the P19 cells following retinoic acid treatment indicates different utilization or temporal requirements for these proteins during neuronal differentiation. 相似文献
7.
8.
L L Sarliève P Mandel 《Comptes rendus des séances de la Société de biologie et de ses filiales》1975,169(5):1288-1290
The activity of 3'-phosphoadenosine-5'-phosphosulfate : galactocerebroside sulphotransferase (PAPS - CST, EC 2.8.2.11), which catalyzes the synthesis of sulphatides, was measured in cloned cells (NIE 115) derived from mouse neuroblastoma C-1300. This activity was of the same order of magnitude as that observed in adult mouse brain. The cell density had no effect on the specific activity of the PAPS-CST. 相似文献
9.
10.
Yoshida N Hishiyama S Yamaguchi M Hashiguchi M Miyamoto Y Kaminogawa S Hisatsune T 《Experimental cell research》2003,287(2):262-271
Neuronal differentiation of embryonic neural progenitor cells is regulated by both intrinsic and extrinsic signals. Since dynamic changes in cell shape typify neuronal differentiation, cell adhesion molecules could be relevant to this process. Although it has been reported that fibronectin-integrin interactions are important for the proliferation of neural progenitor cells, little is known about the contribution of integrins to neuronal differentiation. In order to address this shortfall, we examined integrin expression on cortical progenitor cells by using immunohistochemistry and FACS analysis of cells in which GFP expression was driven by regulatory (promoter) regions of the nestin gene (nestin-GFP(+)). We here report that high levels of nestin promoter activity correlated with high expression levels of alpha(5)beta(1) integrin (alpha(5)beta(1)(high) cells). FACS analysis of nestin-GFP(+) cortical cells revealed an additional subpopulation with reduced expression of alpha(5)beta(1) integrin (alpha(5)beta(1)(low) cells). The size of the alpha(5)beta(1)(low) subpopulation increased during cortical development. To investigate the correlation between integrin and neuronal differentiation, nestin-GFP(+) cortical progenitor cells were sorted into alpha(5)beta(1)(high) or alpha(5)beta(1)(low) populations, and each potential to differentiate was analyzed. We show that the nestin-GFP(+) alpha(5)beta(1)(high) population corresponded to broadly multipotential neural progenitor cells, whereas nestin-GFP(+) alpha(5)beta(1)(low) cells appeared to be committed to a neuronal fate. These findings suggest that alpha(5)beta(1) expression on cortical progenitor cells is developmentally regulated and its downregulation is involved in the process of neuronal differentiation. 相似文献
11.
Hiraga Y Kihara A Sano T Igarashi Y 《Biochemical and biophysical research communications》2006,344(3):852-858
Sphingosine 1-phosphate (S1P) is a ligand for S1P family receptors (S1P(1)-S1P(5)). Of these receptors, S1P(1), S1P(2), and S1P(3) are ubiquitously expressed in adult mice, while S1P(4) and S1P(5) are tissue specific. However, little is known of their expression during embryonal development. We performed Northern blot analyses in mouse embryonal tissue and found that such expression is developmentally regulated. We also examined the expression of these receptors during primitive endoderm (PrE) differentiation of mouse F9 embryonal carcinoma (EC) cells, a well-known in vitro endoderm differentiation system. S1P(2) mRNA was abundantly expressed in F9 EC cells, but little S1P(1) and no S1P(3), S1P(4), or S1P(5) mRNA was detectable. However, S1P(1) mRNA expression was induced during EC-to-PrE differentiation. Studies using small interference RNA of S1P(1) indicated that increased S1P(1) expression is required for PrE differentiation. Thus, S1P(1) may play an important function in PrE differentiation that is not substituted for by S1P(2). 相似文献
12.
Ubiquitin and ubiquitin-protein conjugates in PC12h cells were detected with in vitro [125I]ubiquitination, and quantified by immunoblotting. These levels were altered by nerve growth factor (NGF), which promotes neuronal differentiation. (i) Levels of high molecular weight (HMW) ubiquitin-protein conjugates ranging from 40 to 1,000kDa were increased by 2 days of NGF treatment, and remained high up to 10 days of NGF treatment. (ii) Ubiquitin and a 23-kDa conjugate tended to be decreased from days 2 to 10 of NGF treatment. 10-Day culture with 10 nM staurosporine, an protein kinase inhibitor, that blocks NGF-induced neurite outgrowth suppressed the NGF-induced increases in levels of HMW conjugates. Cyclic AMP and forskolin, both of which promote neurite outgrowth, mimicked the NGF-induced changes in ubiquitin and HMW conjugates, but phorbol ester and epidermal growth factor had little effect. These findings suggest that changes in ubiquitin-protein conjugates are closely coupled with neuronal differentiation. 相似文献
13.
《Cell differentiation》1981,10(6):309-315
Proteolytic activity was measured in murine erythroleukemic 745 cell line grown in culture, before and after the addition of agents which promote differentiation. The 36,000 × g soluble fraction of the cells degraded [14C]globin with maximal activity at pH 3.6, while the insoluble fraction failed to degrade [14C]globin within a pH range of 2.5–9.0.The acid protease activity in the soluble fraction of the undifferentiated murine erythroleukemic cells increased during the first 2 days in culture and remained constant during the following 4 days. We suggest that this activity resides in the lysosomes since it migrates together with the lysosomal marker α-mannosidase on colloidal silica gradients, shows maximum activity at acid pH and is sensitive towards inhibition by pepstatin. Induced differentiation of the cells by dimethyl sulfoxide, butyric acid or hexamethylene bisacetamide was concomitantly associated with a marked reduction in protease activity and the accumulation of hemoglobin within the cells. In contrast, in a non-inducible variant of 745 cell line DMSO failed to affect proteolysis. It is suggested that in murine erythroleukemic cells changes in acid protease activity are associated with the cellular triggered by chemical inducers. 相似文献
14.
Identification of genes up-regulated by retinoic-acid-induced differentiation of the human neuronal precursor cell line NTERA-2 cl.D1 总被引:1,自引:0,他引:1
The human teratocarcinoma cell line NTERA-2 cl.D1 (NT2 cells) can be induced with retinoic acid and cell aggregation to yield postmitotic neurones. This seems to model the in vivo situation, as high concentrations of retinoic acid, retinoic acid binding proteins, and receptors have been detected in the embryonic CNS and the developing spinal cord suggesting a role for retinoic acid in neurogenesis. Suppression subtractive hybridization was used to detect genes up-regulated by this paradigm of neuronal differentiation. Microfibril-associated glycoprotein 2 was found to be drastically up-regulated and has not been implicated in neuronal differentiation before. Suppression subtractive hybridization also identified DYRK4, a homologue of the Drosophila gene minibrain. Minibrain mutations result in specific defects in the development of the fly central nervous system. In adult rats, DYRK4 is only expressed in testis, but our results suggest an additional role for DYRK4 in neuronal differentiation. We have shown that suppression subtractive hybridization in conjunction with an efficient screening procedure is a valuable tool to produce a repertoire of differentially expressed genes and propose a new physiological role for several identified genes and expressed sequence tags. 相似文献
15.
Kessler BM Lennon-Duménil AM Shinohara ML Lipes MA Ploegh HL 《Nature medicine》2000,6(10):1064; author reply 1065-1064; author reply 1066
16.
A Minowa T Kobayashi Y Shimada H Maeda K Murakami-Murofushi J Ohta K Inoue 《Biochimica et biophysica acta》1990,1043(2):129-133
Changes in phospholipid composition and phospholipase D activity were observed during a differentiation from haploid myxoamoebae to diploid plasmodia of a true slime mold, Physarum polycephalum. In the amoeboid stage, the main components of phospholipid fraction were phosphatidylethanolamine (PE, 43.3%), phosphatidylcholine (PC, 28.8%) and phosphatidylinositol (PI, 8.0%), but in the plasmodial stage, PC was dominant (40.7%) and other main components were PE (31.5%) and phosphatidic acid (PA, 11.0%). The specific activity of phospholipase D in the plasmodia was 5.7-times higher than that in the myxoamoebae when measured in the presence of Ca2+ at the alkaline pH. In the amoeboid stage, phospholipase A activity (A1 or A2) was detected at the alkaline pH with Ca2+. Phospholipase D activity in the plasmodia was characterized: pH optimum was 6.0; Ca2+ was required for the reaction and Ba2+ could substitute partly for Ca2+; PE was the best substrate for the hydrolytic activity and PC and PI were not appreciably hydrolyzed; and all detergents tested inhibited the enzyme activity. 相似文献
17.
Human cytomegalovirus inhibits neuronal differentiation and induces apoptosis in human neural precursor cells 总被引:6,自引:0,他引:6 下载免费PDF全文
Odeberg J Wolmer N Falci S Westgren M Seiger A Söderberg-Nauclér C 《Journal of virology》2006,80(18):8929-8939
Human cytomegalovirus (HCMV) is the most common cause of congenital infections in developed countries, with an incidence varying between 0.5 and 2.2% and consequences varying from asymptomatic infection to lethal conditions for the fetus. Infants that are asymptomatic at birth may still develop neurological sequelae, such as hearing loss and mental retardation, at a later age. Infection of neural stem and precursor cells by HCMV and consequent disruption of the proliferation, differentiation, and/or migration of these cells may be the primary mechanism underlying the development of brain abnormalities. In the present investigation, we demonstrate that human neural precursor cells (NPCs) are permissive for HCMV infection, by both the laboratory strain Towne and the clinical isolate TB40, resulting in 55% and 72% inhibition of induced differentiation of human NPCs into neurons, respectively, when infection occurred at the onset of differentiation. This repression of neuronal differentiation required active viral replication and involved the expression of late HCMV gene products. This capacity of HCMV to prevent neuronal differentiation declined within 24 h after initiation of differentiation. Furthermore, the rate of cell proliferation in infected cultures was attenuated. Surprisingly, HCMV-infected cells exhibited an elevated frequency of apoptosis at 7 days following the onset of differentiation, at which time approximately 50% of the cells were apoptotic at a multiplicity of infection of 10. These findings indicate that HCMV has the capacity to reduce the ability of human NPCs to differentiate into neurons, which may offer one explanation for the abnormalities in brain development associated with congenital HCMV infection. 相似文献
18.
19.
Changes in integrin expression during adipocyte differentiation 总被引:3,自引:0,他引:3
3T3-L1 preadipocytes require cAMP for maximal differentiation. Microarray analysis reveals that the integrins alpha5 and alpha6 are coordinately regulated by cAMP. alpha5 expression is gradually diminished during adipogenesis, whereas alpha6 is increased. Overexpression of alpha5 in preadipocytes results in enhanced proliferation and attenuated differentiation. Conversely, alpha6 overexpression is without effect. The GTPase Rac is normally inhibited during differentiation. However, overexpression of integrin alpha5 increases Rac activity. Constitutively active but not dominant-negative Rac inhibits differentiation when overexpressed in preadipocytes, implying its role downstream of alpha5 integrin in maintaining preadipocytes in an undifferentiated state. Moreover, alpha6 integrin is critically involved in clustering growth-arrested preadipocytes on basement membrane Matrigel. Perturbation of such clustering enhances Rho activity and promotes growth-arrested preadipocytes to reenter the cell cycle. These findings demonstrate a role for integrin alpha6 in connecting morphogenesis with signaling processes leading to terminal differentiation. 相似文献
20.
We have recently developed a rapid protocol involving NT2 cell aggregation and treatment with retinoic acid (RA) to produce terminally differentiated CNS neurons. As a first step to explore the functional roles of cell-cycle regulatory proteins in the process of neuronal differentiation, the expression profiles of cyclin-dependent kinases (Cdks) and their regulators were examined in NT2 cells following treatment with RA. One of the Cdks, Cdk5, has been demonstrated to affect the process of neuronal differentiation and suggested to play an important role in development of the nervous system. We found that the expression of Cdk5 was gradually increased, while its activators (p35 and p39) as well as Cdk5 kinase activity were induced in NT2 cells during the process of neuronal differentiation. Moreover, both p35 and p39 were localized along the axons and varicosity-like structures of differentiated NT2 neurons. Taken together, our results demonstrated that NT2 cells provide a good in vitro model system to examine signaling pathways involved in the regulation of Cdk5 activators and to elucidate the functional roles of Cdk5 in neuronal differentiation. 相似文献