首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility to apply N-15 in vivo NMR spectroscopy to study algal N-metabolism has been investigated. N-15 labelled cells of the green alga Chlorella fusca, subjected to nitrogen starvation and N-14 labelled cells supplied with K15NO3 after prolonged nitrogen starvation were monitored by N-15 in vivo NMR spectroscopy at different times after the change in their nitrogen supply. During 20–40 min, necessary for the acquisition of 1 spectrum, the cells were under dark anaerobic conditions, but the relative amounts of the metabolites detected did not change. Signals from 2 acid amides, from the side chain nitrogens of arginine and lysine, from prolin as well as 4 signals from α amino groups of amino acids were detected. Besides two signals not yet reported in the literature were found. They may be due to amino compounds, but not to amino acids. The amount of free amino acids in the cells increases not only upon resupply of nitrogen starved cells with nitrate but also during the first hours after nitrate depletion. The spectra obtained from N-15 labelled autospores show that N-15 in vivo NMR spectroscopy can be applied to the investigation of N metabolism of the cells.  相似文献   

2.
The carbon and nitrogen metabolism of Klebsiella pneumoniae M5a1 has been characterized using 13C and 15N labeling with detection by cross-polarization magic-angle spinning solid-state NMR. Cells grown on ammonium typically require some 20 h to derepress fully for nitrogenase when transferred to medium devoid of any source of fixed nitrogen. We have established that during this period some cellular proteins are catabolized with the liberated nitrogen being used for the synthesis of purines needed for formation of ribosomal RNA. The 20-h derepression period can be shortened to 6 h by the introduction of fixed nitrogen in certain specific forms. Serine is the most successful agent we have examined for shortening the derepression period and glycine among the least successful. We attribute this difference to the advantage of serine over glycine in providing both specific and nonspecific carbon and nitrogen sources for complete purine synthesis. These determinations were made by tracing the metabolism of 13C- and 15N-labeled chemical bonds from the 2 amino acids during derepression.  相似文献   

3.
In vitro experiments have shown that fermentation of carbohydrates prevents accumulation of nitrogen in the colon. Variable results have been obtained on modulation of dietary intakes in vivo. Lactose[15N,15N]-labeled ureide has been proposed as a tool to study colonic nitrogen metabolism. However, on oral administration of the marker, different urinary excretion patterns of the 15N label have been found. In this study, 50 mg lactose[15N,15N]ureide was directly instilled in the colon through an orocecal tube to investigate the colonic handling of this molecule in a direct way. In basal conditions, 42% (range, 37-48%) of labeled nitrogen administered as lactose[15N,15N]ureide was retrieved in urine after 72 h. A substantial variability in total urinary excretion of the label was found, but the urinary excretion pattern of the label was similar in all volunteers. When inulin, a fermentable carbohydrate, was administered together with the labeled marker, a significant decrease in urinary excretion of 15N after 72 h was found, to 29% (range, 23-34%). The effect of a smaller dose of inulin (250 mg) on colonic handling of lactose[15N,15N]ureide (50 mg), was investigated in another group of volunteers, and this time, fecal excretion of the marker was also evaluated. The results seem to indicate that fermentation of inulin causes an increased fecal excretion of the marker, thereby reducing urinary excretion but not retention in the human nitrogen pool. This instillation study shows that lactose[15N,15N]ureide is a tool with good properties to investigate the effect of different types of carbohydrates on nitrogen metabolism in the proximal colon in vivo.  相似文献   

4.
Methanobacterium thermoautotrophicum can utilize glutamine and urea as well as ammonia as the sole nitrogen source during growth on H2 and CO2. High-field 15N-NMR has been used to compare the assimilation of these different nitrogen sources by this organism. The 15N-NMR spectra of extracts of cells grown in media containing [delta-15N]glutamine as the nitrogen source show that the glutamine amide nitrogen is rapidly converted to glutamate. The 15N-NMR spectra of cell extracts from cells grown on [15N]urea show a marked increase in the labeling of the alpha-NH2 of glutamate concurrent with a decrease in the urea resonance. These two nitrogen sources do not show the metabolic shift to alanine as the major resonance in stationary phase as is seen with 15NH4Cl. This behavior is discussed in terms of the enzymes of nitrogen metabolism.  相似文献   

5.
R Timkovich 《Biochemistry》1990,29(33):7773-7780
15N-1H correlation spectroscopy with detection at the 1H frequency has been used at natural abundance to detect nitrogen nuclei bonded to protons in the ferrocytochrome c-551 from Pseudomonas aeruginosa (ATCC 19429). Side-chain aromatic nitrogens, main-chain amides, and side-chain amides have been assigned to specific residues by comparison to previous proton assignments. Assignment ambiguities arising from overlap in the proton dimension have been resolved by examining spectra as a function of temperature and pH. Nitrogen chemical shifts are reported at pH 4.6 and 9.4 and three temperatures, 32, 50, and 60 degrees C. Significant differences arise from the observed protein shifts and expected shifts in the random coil polypeptide.  相似文献   

6.
This is the second of two papers [Drews, M., Doverskog, M., Ohman, L., Chapman, B.E., Jacobsson, U., Kuchel, P.W., H?ggstr?m, L., 2000. Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen assimilation system, and a metabolic switch by 1H/15N NMR. J. Biotechnol. 78, 23-37]. where the general goal has been to determine and characterise the glutamine metabolism in Sf9 cells. The presence of glutamate synthase (GOGAT) activity was investigated in cell-free extracts of S. frugiperda (Sf9) insect cells by modified 1H/15N spin-echo and gradient enhanced multiple quantum coherence NMR spectroscopy techniques. Cell-free extracts were prepared from cells cultured in a serum-free medium. The assay conditions were based on conventional spectrophotometric and chromatographic methods. NMR data showed that nitrogen from [5-15N] glutamine was selectively incorporated into 2-oxoglutarate forming [2-15N] glutamate with a specific activity of 4.15 +/- 0.21 nmol [2-15N] glutamate min -1 (mg total protein)-1 in the cell-free extracts. The enzyme activity was exclusively dependent on NADH as coenzyme and was completely inhibited by 1 mM azaserine. From the results obtained, we conclude that Sf9 cells possess NADH-GOGAT activity. Furthermore, the high specificity of the NMR method enables distinction of competing reactions from glutaminase and glutamate dehydrogenase.  相似文献   

7.
15N-NMR spectroscopy has been shown to be useful to understand the chemical nature of nitrogen in a biomolecule. We herein report the use of 15N-NMR as a tool for the study of exact location of a substitution on the guanine or uracil moieties in a nucleoside, to understand the implication of a protecting group on the reactivity and the basicity of nitrogen atoms in pyrimidines or in purines and to assign the structure of isomeric N7 and N9 substituted purines.  相似文献   

8.
The analysis of primary and secondary nitrogen metabolism in plants by nuclear magnetic resonance (NMR) spectroscopy is comprehensively reviewed. NMR is a versatile analytical tool, and the combined use of 1H, 2H, 13C, 14N and 15N NMR allows detailed investigation of the acquisition, assimilation and metabolism of nitrogen. The analysis of tissue extracts can be complemented by the in vivo NMR analysis of functioning tissues and cell suspensions, and by the application of solid state NMR techniques. Moreover stable isotope labelling with 2H-, 13C- and 15N-labelled precursors provides direct insight into specific pathways, with the option of both time-course and steady state analysis increasing the potential value of the approach. The scope of the NMR method, and its contribution to studies of plant nitrogen metabolism, are illustrated with a wide range of examples. These include studies of the GS/GOGAT pathway of ammonium assimilation, investigations of the metabolism of glutamate, glycine and other amino acids, and applications to tropane alkaloid metabolism. The continuing development of the NMR technique, together with potential applications in the emerging fields of metabolomics and metabolic flux analysis, leads to the conclusion that NMR will play an increasingly valuable role in the analysis of plant nitrogen metabolism.  相似文献   

9.
The 15N content of pheophytin, the magnesium-free derivative of chlorophyll, can be measured with great accuracy and precision using positive-ion atmospheric pressure ionization electrospray mass spectroscopy following a simple solvent extraction of small amounts of plant tissue. The molecular weight of pheophytin prepared from Chlamydomonas reinhardtii grown in different ratios of 14N/15N showed linear regression with the isotopic input, with a precision of 0.5-1%. Using an isotope dilution strategy, we have shown that nitrogen fixation can contribute substantial 14N to pheophytin isolated from Medicago truncatula plants grown in symbiosis with Sinorhizobium meliloti. The assay is sensitive, precise, rapid, simple, and robust. These features suggest that it could become an important tool for measuring the contribution of symbiotic and associative nitrogen fixation to plant metabolism.  相似文献   

10.
The nitration of free tyrosine or protein tyrosine residues generates 3-nitrotyrosine the detection of which has been utilised as a footprint for the in vivo formation of peroxynitrite and other reactive nitrogen species. The detection of 3-nitrotyrosine by analytical and immunological techniques has established that tyrosine nitration occurs under physiological conditions and levels increase in most disease states. This review provides an updated, comprehensive and detailed summary of the tissue, cellular and specific protein localisation of 3-nitrotyrosine and its quantification. The potential consequences of nitration to protein function and the pathogenesis of disease are also examined together with the possible effects of protein nitration on signal transduction pathways and on the metabolism of proteins.  相似文献   

11.
The nitration of free tyrosine or protein tyrosine residues generates 3-nitrotyrosine the detection of which has been utilised as a footprint for the in vivo formation of peroxynitrite and other reactive nitrogen species. The detection of 3-nitrotyrosine by analytical and immunological techniques has established that tyrosine nitration occurs under physiological conditions and levels increase in most disease states. This review provides an updated, comprehensive and detailed summary of the tissue, cellular and specific protein localisation of 3-nitrotyrosine and its quantification. The potential consequences of nitration to protein function and the pathogenesis of disease are also examined together with the possible effects of protein nitration on signal transduction pathways and on the metabolism of proteins.  相似文献   

12.
Protein turnover rates in neonates have been calculated largely by measuring urinary [15N]urea enrichment following administration of [15N]glycine. Although ammonia has been increasingly recognized as an end product of nitrogen metabolism, in neonates it yields a different estimate of protein turnover than does urea. Comparisons of ammonia and urea end products in parenterally fed neonates have not previously been reported. A third and independent way of estimating protein turnover, developed for adults, is to use breath 13CO2 as an end product following administration of [1-13C]leucine. We therefore carried out simultaneous measurements of protein turnover in 10 parenterally fed neonates, using the three end products. The infants were clinically stable, weighed 2.6 +/- 0.2 kg, and received 3.1 +/- 0.2 g.kg-1.d-1 of amino acid, 2.2 +/- 0.1 g.kg-1.d-1 of lipids, and an energy intake of 90 +/- 4 kcal.kg-1.d-1 (1 kcal = 4.186 kJ). The turnover estimates derived from the 13CO2 and [15N]urea end products were very similar. The [15N]ammonia end product produced values approximately 66% (p less than 0.01) of the other two. We conclude that the ammonia and urea end products probably originate in different precursor pools. The similarity of the urea and breath carbon dioxide results helps validate the use of the urea end product in studying the nitrogen metabolism of parenterally fed neonates. Ideally in future studies two or more end products should be used, since they provide information about different aspects of the neonates' protein metabolism.  相似文献   

13.
The ubisemiquinone stabilized at the Qi-site of the bc1 complex of Rhodobacter sphaeroides forms a hydrogen bond with a nitrogen from the local protein environment, tentatively identified as ring N from His-217. The interactions of 14N and 15N have been studied by X-band (approximately 9.7 GHz) and S-band (3.4 GHz) pulsed EPR spectroscopy. The application of S-band spectroscopy has allowed us to determine the complete nuclear quadrupole tensor of the 14N involved in H-bond formation and to assign it unambiguously to the Nepsilon of His-217. This tensor has distinct characteristics in comparison with H-bonds between semiquinones and Ndelta in other quinone-processing sites. The experiments with 15N showed that the Nepsilon of His-217 was the only nitrogen carrying any considerable unpaired spin density in the ubiquinone environment, and allowed calculation of the isotropic and anisotropic couplings with the Nepsilon of His-217. From these data, we could estimate the unpaired spin density transferred onto 2s and 2p orbitals of nitrogen and the distance from the nitrogen to the carbonyl oxygen of 2.38+/-0.13A. The hyperfine coupling of other protein nitrogens with semiquinone is <0.1 MHz. This did not exclude the nitrogen of the Asn-221 as a possible hydrogen bond donor to the methoxy oxygen of the semiquinone. A mechanistic role for this residue is supported by kinetic experiments with mutant strains N221T, N221H, N221I, N221S, N221P, and N221D, all of which showed some inhibition but retained partial turnover.  相似文献   

14.
In vivo (15)N nuclear magnetic resonance (NMR) as well as (15)N solid-state magic angle spinning (MAS) NMR spectroscopy were used to investigate nitrogen metabolism in cultured white spruce (Picea glauca) buds. Long-term as well as short-term experiments were carried out involving the use of inhibitors of the nitrogen pathways such as methionine sulfoximine (MSO), azaserine (AZA) and aminooxyacetate (AOA). Both in vivo and solid-state NMR showed that when MSO blocked glutamine synthetase (GS) no NH(4)(+) is incorporated. When glutamate synthase (GOGAT) is blocked by AZA there is some incorporation into glutamine (Gln), but very little into alpha-amino groups (glutamate, Glu). The transamination inhibitor AOA does not affect the metabolism of (15)NH(4)(+) into Gln and Glu, but blocks the production of arginine (Arg), as would be expected. Proline (Pro) and gamma-aminobutyric acid (GABA), which are produced directly from Glu without a transamination step, were not affected. The solid-state NMR experiments showed that protein synthesis occurred. Collectively, our results show that NH(4)(+) can only be assimilated through the GS/GOGAT pathway in P. glauca buds.  相似文献   

15.
AIMS: To isolate micro-organisms capable of utilizing polyhexamethylene biguanide (PHMB) as a sole source of nitrogen, and to demonstrate biodegradation of the biocide. METHODS AND RESULTS: Two consortia of bacteria were successfully enriched at the expense of PHMB, using sand from PHMB-treated swimming pools as inoculum. Both consortia were shown to contain bacteria belonging to the genera Sphingomonas, Azospirillum and Mesorhizobium. It was shown that the presence of both Sphingomonas and Azospirillum spp. was required for extensive growth of the consortia. In addition, the Sphingomonads were the only isolates capable of growth in axenic cultures dosed with PHMB. Using a stable isotope (15N)-labelled PHMB, metabolism of the biocide by both consortia was demonstrated. By comparing the level of 15N atom incorporation into bacterial DNA after growth on either 15N-PHMB or 15N-labelled NH4Cl, it was possible to estimate the percentage of PHMB biodegradation. CONCLUSIONS: The microbial metabolism of nitrogen from the biguanide moiety of PHMB has been demonstrated. It was revealed that Sphingomonas and Azospirillum spp. are the principal organisms responsible for growth at the expense of PHMB. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate the microbial metabolism of PHMB.  相似文献   

16.
Glycine and serine are potential sources of nitrogen for the aquatic resurrection plant Chamaegigas intrepidus Dinter in the rock pools that provide its natural habitat. The pathways by which these amino acids might be utilized were investigated by incubating C. intrepidus roots and maize (Zea mays) root tips with [(15)N]glycine, [(15)N]serine and [2-(13)C]glycine. The metabolic fate of the label was followed using in vivo NMR spectroscopy, and the results were consistent with the involvement of the glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) in the utilization of glycine. In contrast, the labelling patterns provided no evidence for the involvement of serine:glyoxylate aminotransferase in the metabolism of glycine by the root tissues. The key observations were: (i) the release of [(15)N]ammonium during [(15)N]-labelling experiments; and (ii) the detection of a characteristic set of serine isotopomers in the [2-(13)C]glycine experiments. The effects of aminoacetonitrile, amino-oxyacetate, and isonicotinic acid hydrazide, all of which inhibit GDC and SHMT to some extent, and of methionine sulphoximine, which inhibited the reassimilation of the ammonium, supported the conclusion that GDC and SHMT were essential for the metabolism of glycine. C. intrepidus was observed to metabolize serine more readily than the maize root tips and this may be an adaptation to its nitrogen-deficient habitat. Overall, the results support the emerging view that GDC is an essential component of glycine catabolism in non-photosynthetic tissues.  相似文献   

17.
L P Yu  G M Smith 《Biochemistry》1990,29(12):2920-2925
The 15N-enriched ferricytochrome c2 from Rhodospirillum rubrum has been studied by 15N and 1H NMR spectroscopy as a function of pH. The 15N resonances of the heme and ligand tau nitrogen are broadened beyond detection because of paramagnetic relaxation. The 15N resonance of the ligand histidine phi nitrogen was unambiguously identified at 184 ppm (pH 5.6). The 15N resonances of the single nonligand histidine are observed only at low pH, as in the ferrocytochrome because of the severe broadening caused by tautomerization. The dependence of the 15N and 1H spectra of the ferricytochrome on pH indicated that the ligand histidine tau NH does not dissociate in the neutral pH range and is involved in a hydrogen bond, similar to that in the reduced state. Because neither deprotonated nor non-hydrogen-bonded forms of the ligand histidine are observed in the spectra of either oxidation state, the participation of such forms in producing heterogeneous populations having different electronic g tensors is ruled out. Transitions having pKa's of 6.2, 8.6, and 9.2 are observed in the ferricytochrome. The localized conformational change around the omega loops is observed in the neutral pH range, as in the ferrocytochrome. Structural heterogeneity leads to multiple resonances of the heme ring methyl at position 8. The exchange rate between the conformations is temperature dependent. The transition with a pKa of 6.2 is assigned to the His-42 imidazole group. The displacement of the ligand methionine, which occurs with a pKa of 9.2, causes gross conformational change near the heme center.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Glutamic acid producer Brevibacterium lactofermentum intact cells were used to demonstrate the feasibility of in vivo 15N NMR to follow nitrogen assimilation and amino acid production throughout the growth cycle. The induction of glutamic acid production by different growth conditions was studied. Intracellular and extracellular levels of free metabolites were estimated as function of oxygen supply and biotin concentration. 15N NMR enabled us to distinguish two phases during the fermentation. At the early stage of fermentation, glutamic acid was accumulated intracellularly independent of oxygen supply and no product was excreted. In the late growth phase, the permeability of the cells developed and L-glutamic acid was excreted. The effect of aeration and biotin concentration on cellular contents and excretion was also studied by 15N NMR. Glutamate, N-acetylglutamine, and glutamine were the main nitrogenous pools independent of cell culture conditions. Free ammonia was not accumulated intracellularly although glutamic acid fermentation can be characterized as the process of nitrogen assimilation and the uptake of ammonia is the key step. In conclusion, the application of in vivo 15N NMR spectroscopy unraveled various problems of nitrogen metabolism, in a rapid and nondestructive manner.  相似文献   

19.
De-differentiation of transformed root cultures of Datura stramonium has previously been shown to cause a loss of tropane alkaloid synthetic capacity. This indicates a marked shift in physiological status, notably in the flux of primary metabolites into tropane alkaloids. Nitrogen metabolism in transformed root cultures of D. stramonium (an alkaloid-producing system) and de-differentiated suspension cultures derived therefrom (a non-producing system) has been compared using Nuclear Magnetic Resonance (NMR) spectroscopy. (15)N-Labelled precursors [((15)NH(4))(2)SO(4) and K(15)NO(3)] were fed and their incorporation into nitrogenous metabolites studied using Heteronuclear Multiple Bond Coherence (HMBC) NMR spectroscopy. In both cultures, the same amino acids were resolved in the HMBC spectra. However, marked differences were found in the intensity of labelling of a range of nitrogenous compounds. In differentiated root cultures, cross-peaks corresponding to secondary metabolites, such as tropine, were observed, whereas these were absent in the de-differentiated cultures. By contrast, N- acetylputrescine and gamma-aminobutyric acid (GABA) accumulated in the de-differentiated cultures to a much larger extent than in the root cultures. It can therefore be suggested that the loss of alkaloid biosynthesis was compensated by the diversion of putrescine metabolism away from the tropane pathway and toward the synthesis of GABA via N-acetylputrescine.  相似文献   

20.
A secreted, hypervariable virulence factor called the streptococcal inhibitor of complement (Sic) has been linked to the reemergence of epidemics due to the human pathogenic bacterium Group A Streptococcus. This paper describes a method for expressing and purifying Sic from an attenuated GAS strain using a chemically defined growth medium. This method was used to label specific amino acid residue types in Sic with forms containing the magnetically active isotope (15)N, at the amide nitrogen. The (15)N-labeling of Sic permits a detailed investigation of the structure and dynamics of the protein using nuclear magnetic resonance spectroscopy. The level of stable isotope incorporation was established using mass spectrometry and nuclear magnetic resonance spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号