首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Vector-borne diseases often originate from wildlife and can spill over into the human population. One of the most important determinants of vector-borne disease transmission is the host preference of mosquitoes. Mosquitoes with a specialised host preference are guided by body odours to find their hosts in addition to carbon dioxide. Little is known about the role of mosquito host preference in the spillover of pathogenic agents from humans towards animals and vice versa. In the Republic of Congo, the attraction of mosquitoes to primate host odours was determined, as well as their possible role as malaria vectors, using odour-baited traps mimicking the potential hosts of mosquitoes. Most of the mosquito species caught showed a generalistic host preference. Anopheles obscurus was the most abundant Anopheles mosquito, with a generalistic host preference observed from the olfactory response and the detection of various Plasmodium parasites. Interestingly, Culex decens showed a much higher attraction towards chimpanzee odours than to human or cow odours. Human Plasmodium parasites were observed in both human and chimpanzee blood, although not in the Anopheles mosquitoes that were collected. Understanding the role of mosquito host preference for cross-species parasite transmission provides information that will help to determine the risk of spillover of vector-borne diseases.  相似文献   

3.
4.
Once a gene is identified as potentially refractory for malaria, it must be evaluated for its role in preventing Plasmodium infections within the mosquito. This protocol illustrates how the extent of plasmodium infections of mosquitoes can be assayed. The techniques for preparing the gametocyte culture, membrane feeding mosquitoes human blood, and assaying viral titers in the mosquito midgut are demonstrated.  相似文献   

5.
Transgenic mosquitoes and malaria transmission   总被引:4,自引:0,他引:4  
As the malaria burden persists in most parts of the developing world, the concept of implementation of new strategies such as the use of genetically modified mosquitoes to control the disease continues to gain support. In Africa, which suffers most from malaria, mosquito vector populations are spread almost throughout the entire continent, and the parasite reservoir is big and continuously increasing. Moreover, malaria is transmitted by many species of anophelines with specific seasonal and geographical patterns. Therefore, a well designed, evolutionarily robust and publicly accepted plan aiming at population reduction or replacement is required. The task is twofold: to engineer mosquitoes with a genetic trait that confers resistance to malaria or causes population suppression; and, to drive the new trait through field populations. This review examines these two issues, and describes the groundwork that has been done towards understanding of the complex relation between the parasite and its vector.  相似文献   

6.
Many mosquito species, including the major malaria vector Anopheles gambiae, naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite’s extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.3 ± 0.4 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R0, and find the average R0 is higher (range: 10.1%–12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions.  相似文献   

7.
8.
Differential infectivity of Plasmodium for mosquitoes   总被引:4,自引:0,他引:4  
The four human malarias - Plasmodium falciparum, P. vivax, P. ovale and P. malariaecan - canonly be transmitted by mosquitoes of the genus Anopheles, although not all species (nor all strains) of these mosquitoes are equally susceptible. Moreover, there are many other plasmodial parasites of other mammals and birds, that can infect other genera of mosquito. What determines this level of vector-parasite specificity? Malarial gametocytes, ingested by a feeding mosquito, must transform to gametes, fuse to form zygotes, and then, as ookinetes, migrate to the mosquito's midgut epithelium to develop as oocysts that release sporozoites to infect the mosquito's salivary glands. During this process, the blood- fed mosquito is developing its peritrophic membrane lining the gut. In this article, the Guthors examine these parallel processes in three sets of mosquito-parasite models, suggesting that parasite-vector specificity may depend on a balance between speed of parasite development versus speed of formation of the peritrophic membrane which can act as a barrier to ookinete migration and establishment in the midgut epithelium.  相似文献   

9.
10.

Background

Co-occurrence of malaria and filarial worm parasites has been reported, but little is known about the interaction between filarial worm and malaria parasites with the same Anopheles vector. Herein, we present data evaluating the interaction between Wuchereria bancrofti and Anopheles punctulatus in Papua New Guinea (PNG). Our field studies in PNG demonstrated that An. punctulatus utilizes the melanization immune response as a natural mechanism of filarial worm resistance against invading W. bancrofti microfilariae. We then conducted laboratory studies utilizing the mosquitoes Armigeres subalbatus and Aedes aegypti and the parasites Brugia malayi, Brugia pahangi, Dirofilaria immitis, and Plasmodium gallinaceum to evaluate the hypothesis that immune activation and/or development by filarial worms negatively impact Plasmodium development in co-infected mosquitoes. Ar. subalbatus used in this study are natural vectors of P. gallinaceum and B. pahangi and they are naturally refractory to B. malayi (melanization-based refractoriness).

Methodology/Principal Findings

Mosquitoes were dissected and Plasmodium development was analyzed six days after blood feeding on either P. gallinaceum alone or after taking a bloodmeal containing both P. gallinaceum and B. malayi or a bloodmeal containing both P. gallinaceum and B. pahangi. There was a significant reduction in the prevalence and mean intensity of Plasmodium infections in two species of mosquito that had dual infections as compared to those mosquitoes that were infected with Plasmodium alone, and was independent of whether the mosquito had a melanization immune response to the filarial worm or not. However, there was no reduction in Plasmodium development when filarial worms were present in the bloodmeal (D. immitis) but midgut penetration was absent, suggesting that factors associated with penetration of the midgut by filarial worms likely are responsible for the observed reduction in malaria parasite infections.

Conclusions/Significance

These results could have an impact on vector infection and transmission dynamics in areas where Anopheles transmit both parasites, i.e., the elimination of filarial worms in a co-endemic locale could enhance malaria transmission.  相似文献   

11.
12.
Migration of the protozoan parasite Plasmodium through the mosquito is a complex and delicate process, the outcome of which determines the success of malaria transmission. The mosquito is not simply the vector of Plasmodium but, in terms of the life cycle, its definitive host: there, the parasite undergoes its sexual development, which results in colonization of the mosquito salivary glands. Two of the parasite's developmental stages in the mosquito, the ookinete and the sporozoite, are invasive and depend on gliding motility to access, penetrate and traverse their host cells. Recent advances in the field have included the identification of numerous Plasmodium molecules that are essential for parasite migration in the mosquito vector.  相似文献   

13.
Previous studies showed that Anopheles gambiae L3-5 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial state-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when state-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of Plasmodium berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection.  相似文献   

14.
Long-lived mosquitoes maximize the chances of Plasmodium transmission. Yet, in spite of decades of research, the effect of Plasmodium parasites on mosquito longevity remains highly controversial. On the one hand, many studies report shorter lifespans in infected mosquitoes. On the other hand, parallel (but separate) studies show that Plasmodium reduces fecundity and imply that this is an adaptive strategy of the parasite aimed at redirecting resources towards longevity. No study till date has, however, investigated fecundity and longevity in the same individuals to see whether this prediction holds. In this study, we follow for both fecundity and longevity in Plasmodium-infected and uninfected mosquitoes using a novel, albeit natural, experimental system. We also explore whether the genetic variations that arise through the evolution of insecticide resistance modulate the effect of Plasmodium on these two life-history traits. We show that (i) a reduction in fecundity in Plasmodium-infected mosquitoes is accompanied by an increase in longevity; (ii) this increase in longevity arises through a trade-off between reproduction and survival; and (iii) in insecticide-resistant mosquitoes, the slope of this trade-off is steeper when the mosquito is infected by Plasmodium (cost of insecticide resistance).  相似文献   

15.
Malaria elimination means cessation of parasite transmission. At present, the declining malaria incidence in many countries has made elimination a feasible goal. Transmission control has thus been placed at the center of the national malaria control programs. The efficient transmission of Plasmodium vivax from humans to mosquitoes is a key factor that helps perpetuate malaria in endemic areas. A better understanding of transmission is crucial to the success of elimination efforts. Biological delineation of the parasite transmission process is important for identifying and prioritizing new targets of intervention. Identification of the infectious parasite reservoir in the community is key to devising an effective elimination strategy. Here we describe the fundamental characteristics of P. vivax gametocytes - the dynamics of their production, longevity, and the relationship with the total parasitemia - as well as recent advances in the molecular understanding of parasite sexual development. In relation to malaria elimination, factors influencing the human infectivity and the current evidence for a role of asymptomatic carriers in transmission are presented.  相似文献   

16.
Basic knowledge of the sporogonic development of malarial parasites is crucial when evaluating the sporontocidal activity of antimalarial drugs or when determining why certain vectors are refractory to a particular parasite while others are competent vectors. We have developed a model which we have used to i) assess the sporogonic development of Plasmodium berghei ANKA in Anopheles stephensi and A. freeborni mosquitoes and ii) determine the effect of chloroquine on the sporogony of P. falciparum NF-54 in A. stephensi. Criteria used to assay sporogonic development include: i) number of oocysts present, ii) percentage of mosquitoes with oocysts, iii) time of release of sporozoites from the oocysts into the hemolymph, iv) time and degree of sporozoite invasion of salivary glands, and v) transmission (P. berghei) into vertebrate hosts. Parasite development in the mosquito is evaluated every other day, commencing on ca. day 7 post-feed (PF) and continuing until ca. day 22 PF. These detailed observations allow us to delineate the chronology of sporogonic development.  相似文献   

17.
18.
19.
20.
An experimental study of the mechanisms and patterns of resistance to Plasmodium berghei in different mosquito species revealed a diversity of factors which prevent or inhibit sporogonic development in its different phases and in different sites in the mosquito vector. The experiments showed that Culex salinarius was a totally resistant species in which exflagellation and ookinete formation are prevented. In Aedes aegypti, ookinetes in small or moderate numbers are formed but penetration of the mosquito midgut wall is blocked and oocysts are not formed. In the three experimental vectors, Anopheles quadrimaculatus, Anopheles aztecus, and Anopheles stephensi grades of enhanced susceptibility are recognized. They are expressed in lesser numbers of abnormal and degenerative oocysts, in higher numbers of sporozoites in the salivary gland, and greater viability and invasiveness of these sporozoites. In Anopheles dureni, the natural vector of rodent malaria, one observes both in nature and under experimental conditions the highest adaptation and most pronounced grade of susceptibility to P. berghei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号