首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytoplasmic organization of a normal green strain of the alga Chlamydomonas reinhardi has been investigated with the electron microscope using thin sections of OsO(4) fixed material. The detailed organization of the chloroplast has been of special interest. The chloroplast, a cup-shaped organelle, surrounded by a double membrane, consists of: (1) discs about 1 micron in diameter, considered to represent the basic structural unit of the chloroplast, and each composed of a pair of membranes joined at their ends to form a flat closed vesicle; the discs are grouped into stacks resembling the grana of higher plants; (2) matrix material of low density in which the discs are embedded; (3) starch grains; (4) the pyrenoid, a non-lamellar region associated with starch synthesis, and containing tubules which connect with the lamellae; (5) the eyespot, a differentiated region containing two or three plates of hexagonally packed, carotenoid-containing granules, located between discs, and associated with phototaxis. In addition to the chloroplast, the cytoplasm contains various membranous and granular components, including mitochondria, endoplasmic reticulum, and dictyosomes, identified on the basis of morphological comparability with structures seen in animal cells. The nucleus, not investigated in detail in this study, contains a large, granular nucleolus and is surrounded by a nuclear envelope which is provided with pores and exhibits instances of continuity with the endoplasmic reticulum of the cytoplasm.  相似文献   

2.
The flagellate Chlorogonium elongatum has been studied in the electron microscope by thin-sectioning techniques. The nucleus, limited by a porous membrane, contains a large nucleolus and some dense masses, probably of chromatin. When the medium is rich or the culture young, the chloroplast has few lamellae, and very few pyrenoids. Inversely, when the medium is poor or jthe culture old, the lamellae are abundant, appearing as piled discs or as a tortuous lamellar system. The pyrenoids are then numerous and are surrounded by starch grains. They are composed of an opaque, finely granular substance, and are never traversed by chloroplast lamellae. The stigma, within the chloroplast, is a circular or oval plate composed of a single tier of dense granulations. The cytoplasm contains mitochondria which are concentrated near the pellicle of the cell, an endoplasmic reticulum, an abundance of ribo-nucleoprotein particles or ribosomes, and a Golgi apparatus. These organelles resemble those observed in other protozoa. The two fiagella are encased in cylinders situated at the anterior end of the cell. At the base of the fiagella are the basal corpuscles or kinetosomes, which repose within a cupule. A dense granule which probably corresponds to the centrosome appears near this structure.  相似文献   

3.
The fusion cell in Asterocolax gardneri Setch, is a large, multinucleate, irregularly-shaped cell resulting from cytoplasmic fusions of haploid and diploid cells. Subsequent enlargement takes place by incorporating adjacent gonimoblast cells. The resultant cell consists of two parts—a central portion of isolated cytoplasm, surrounded by an electron dense cytoplasmic barrier, and the main component of the fusion cell cytoplasm surrounding the isolated cytoplasm. The fusion cell contains many nuclei, large quantities of floridean starch, endoplasmic reticulum, and vesicles, but few mitochondria, plastids and dictyosomes. The endoplasmic reticulum forms vesicles that apparently secrete large quantities of extracellular mucilage which surrounds the entire carposporophyte. The isolated cytoplasm also is multinucleate but lacks starch and a plasma membrane. Few plastids, ribosomes and mitochondria are found in this cytoplasm. However, numerous endoplasmic reticulum cisternae occur near the cytoplasmic barrier and they appear to secrete material for the barrier. In mature carposporophytes, all organelles in the isolated cytoplasm have degenerated.  相似文献   

4.
Lang, Norma J. (U. Texas, Austin.) Electron microscopy of the Volvocaceae and Astrephomenaceae. Amer. Jour. Bot. 50(3): 280-300. Illus. 1963.—Clonal cultures of Gonium sociale, G. pectorale, Pandorina morum, Eudorina elegans, Eudorina sp., Volvulina steinii, V. pringsheimii, Platydorina caudata, Pleodorina illinoisensis, P. californica, Volvox aureus, V. tertius, V. globator, V. barberi, and Astrephomene gubernaculifera representing the Volvocaceae and Astrephomenaceae in the Volvocales were examined with the electron microscope and their ultrastructure compared. The ultrastructure of the various organelles is basically similar in the species studied and no increase in cellular complexity is found to accompany the evolutionary trends evidenced in the Volvocaceae. The ultrastructure of a colonial cell is basically that of Chlamydotnonas. A cytoplasmic membrane having a unit membrane structure encompasses a cell and is continuous with the double-membraned flagellar sheaths. The flagella contain the typical 9 + 2 fibril arrangement with the 2 axial fibrils terminating in a cylinder at the flagellar base and the 9 peripheral pairs continuing into the cytoplasm as a basal body. The organelles comprising the cytoplasm are: mitochondria with plate-like cristae; dictyosomes composed of stacks of agranular cisternae; small, rough or smooth-surfaced vesicles; an endoplasmic reticulum of granule-bearing and agranular tubules, lamellae and broad cisternae; vacuoles which are either contractile, contain fine granular and fibrillar material, or have dense contents probably representing polyphosphate; lipid bodies; and dense granules 100–150 A which have been called ribosomes. The finely granular nucleoplasm is surrounded by a porous, double-membraned nuclear envelope and contains a centric nucleolus composed of dense, spherical granules. The outer membrane of the nuclear envelope bears granules and may have granular extensions into the perinuclear cytoplasm. Each extension appears to encompass one or several dictyosomes and has been termed an “amplexus.” The amplexi are agranular on the surface contiguous to a dictyosome. A double-membraned chloroplast envelope is continuous around the single, cup-shaped chloroplast. The basic chloroplast units are discs closed at each end, occurring in stacks of varying number parallel to the envelope. The presumed proteinaceous matrix of the basal pyrenoid is penetrated by elongated, tubular elements which connect with the lamellar discs. Multiple rows of granules, associated with individual discs, form the anterior stigma within the chloroplast envelope. The colonial matrix is not a structureless, mucilaginous material uniting the cells in colonies, but it has rather a highly complex structure especially around the periphery of the colony and the flagellar channels. The apparent substitution of a fibrillar layer of the colonial matrix for the discrete compact cell wall, such as is found in Chlamydomonas, implies a greater degree of complexity in the evolution of these colonial genera than is generally assumed.  相似文献   

5.
The ovaries of the largescale yellowfish, Labeobarbus marequensis (Teleostei: Cypriniformes: Cyprinidae), are made up of the germinal epithelium, nests of late chromatin nucleolus stage oocytes, and ovarian follicles. Each follicle is composed of a single oocyte, which is surrounded by somatic follicular cells and a basal lamina covered by thecal cells. We describe polarization and ultrastructure of oocytes during the primary growth stage. The oocyte nucleus contains lampbrush chromosomes, nuclear bodies and fibrillar material in which multiple nucleoli arise. Nuage aggregations composed of material of a nuclear origin are present in the perinuclear cytoplasm. The Balbiani body (Bb) contains aggregations of nuage, rough endoplasmic reticulum, individual mitochondria and complexes of mitochondria with nuage (cement). Some mitochondria in the Bb come into close contact with endoplasmic reticulum cisternae and vesicles that contain granular material. At the start of primary growth, the Bb is present in the cytoplasm close to the nucleus. Next, it expands towards the oocyte plasma membrane. In these oocytes, a spherical structure, the so-called yolk nucleus, arises in the Bb. It consists of granular nuage in which mitochondria and vesicles containing granular material are immersed. Later, the Bb becomes fragmented and a fully grown yolk nucleus is present in the vegetal region. It contains numerous threads composed of granular nuage, mitochondria, lysosome-like organelles and autophagosomes. We discuss the formation of autophagosomes in the cytoplasm of primary growth oocytes. During the final step of primary growth, the cortical alveoli arise in the cytoplasm and are distributed evenly. The eggshell is deposited on the external surface of the oocyte plasma membrane and is made up of two egg envelopes that are pierced by numerous pore canals. The external egg envelope is covered in protuberances. During primary growth no lipid droplets are synthesized or stored in the oocytes.  相似文献   

6.
Five types of haemocytes: prohaemocytes, plasmatocytes, granular haemocytes, spherule cells and phagocytes, have been distinguished on the basis of ultrastructural studies. Prohaemocytes are ovoid cells with a simple structural organization. Plasmatocytes are larger; their cytoplasm contains well-developed rough endoplasmic reticulum, numerous mitochondria and free ribosomes. Granular haemocytes are the most numerous of the blood cells, characterized by the presence of electron-dense granules. The cytoplasm of spherule cells contains many spherules made up of filamentous material of medium electron density. Rough endoplasmic reticulum, free ribosomes and mitochondria are also found in the cytoplasm. Phagocytes are the largest haemocytes. Their cytoplasm contains an abundance of lysosomes and myelin structures. In addition to haemocytes, cells intermediate between plasmatocytes and granular haemocytes have been observed, which indicates that the granular haemocytes are derived from plasmatocytes.  相似文献   

7.
Carposporogenesis in Caloglossa leprieurii is divided into three cytological stages. At stage I, the young spores have few plastids and little starch. Abundant dictyosomes secrete a gelatinous wall layer in scale-like units. At stage II, dictyosomes produce a second fibrillar wall component in addition to the gelatinous constituent. Large fibrillar vesicles accumulate in the cytoplasm. Production of gelatinous material decreases in this stage. By stage III, starch grains and fully developed plastids are abundant. Rough endoplasmic reticulum occupies much of the peripheral cytoplasm. A dense, granular proteinaceous component appears in the wall in association with the fibrillar layer. Arrays of randomly oriented tubules are scattered in the cytoplasm. The mature carpospore is surrounded by an outer gelatinous wall layer and an inner fibrillar layer. Few dictyosomes persist in the mature spore. Carposporogenesis in Caloglossa is compared with that in other red algae.  相似文献   

8.
The granular glands of nine species of dendrobatid frogs were examined using light and electron microscopy. The glands are surrounded by a discontinuous layer of smooth muscle cells. Within the glands proper the secretory cells form a true syncytium. Multiple flattened nuclei lie at the periphery of the gland. The peripheral cytoplasm also contains mitochondria, rough surfaced endoplasmic reticulum, the Golgi apparatus, and an abundance of smooth endoplasmic reticulum. Centrally, most of the gland is filled with membrane-bound granules surrounded by amorphous cytoplasm. Few other organelles are found in this region. Early in the secretory cycle, the central part of the gland is filled with flocculent material which appears to be progressively partitioned off by membranes to form the droplet anlage. As granules form, the structure of the contents becomes progressively more vesicular. Dense vesicles, which bud off from the Golgi apparatus, fuse with the granular membrane during the development of granules, and might contain enzymes involved in toxin synthesis. The granules at this point resemble multivesicular bodies. Their structure is similar in all species of dendrobatid frogs even though the different frogs secrete substances of different chemical structure and toxicity.  相似文献   

9.
To improve the current knowledge about the digestive system in opisthobranchs, light and electron microscopy methods were used to characterize the epithelial cells in the mid‐intestine of Aplysia depilans. This epithelium is mainly formed by columnar cells intermingled with two types of secretory cells, named mucous cells and granular cells. Columnar cells bear microvilli on their apical surface and most of them are ciliated. Mitochondria, multivesicular bodies, lysosomes and lipid droplets are the main components of the cytoplasm in the region above the nucleus of these cells. Peroxisomes are mainly found in middle and basal regions, usually close to mitochondria. Mucous cells are filled with large secretory vesicles containing thin electron‐dense filaments surrounded by electron‐lucent material in which acidic mucopolysaccharides were detected. The basal region includes the nucleus, several Golgi stacks and many dilated rough endoplasmic reticulum cisternae containing tubular structures. The granular cells are characterized by very high amounts of flat rough endoplasmic reticulum cisternae and electron‐dense spherical secretory granules containing glycoproteins. Enteroendocrine cells containing small electron‐dense granules are occasionally present in the basal region of the epithelium. Intraepithelial nerve fibres are abundant and seem to establish contacts with secretory and enteroendocrine cells.  相似文献   

10.
In guinea pig testes perfused with either glutaraldehyde or osmium tetroxide fixative, the cytoplasm of the interstitial cells contains an exceptionally abundant agranular endoplasmic reticulum. The reticulum in central regions of the cell is a network of interconnected tubules, but in extensive peripheral areas the reticulum is commonly organized into closely packed, flattened cisternae which are fenestrated. Occasional small patches of the granular reticulum occur in the cytoplasm and connect freely with the agranular reticulum. The mitochondria have a dense matrix and contain cristae and some tubules. The Golgi complex is disperse and shows no evidence of secretory material. The cytoplasm also contains lipid droplets. Lipofuscin pigment granules are probably polymorphic residual bodies and contain three components: (1) a dense material which at high magnification shows a 75-A periodicity; (2) a medium-sized lipid droplet; and (3) a cap-like structure. In glutaraldehyde-perfused testis the interstitial cell cytoplasm appears to have the same density from cell to cell, and the agranular reticulum is tubular or cisternal but not in the form of empty vesicles. Thus the "dark" and "light" cells and the vesicular agranular reticulum sometimes encountered in other fixations may be artifacts. Biochemical results from other laboratories, correlated with the present findings, indicate that the membranes of the agranular endoplasmic reticulum in guinea pig interstitial cells are the site of at least two enzymes of androgen biosynthesis, the 17-hydroxylase and the 17-desmolase.  相似文献   

11.
In the CNS of the Patinopecten yessoensis (Jay) two types of cells have been revealed. The I type cells are typical unipolar neurons with a developed granular endoplasmic reticulum and Golgi compex, with a nucleus containing small amount of chromatin. They possess elementary peptidergic granules. The II type cells have in their cytoplasm and processes a large amount of electron-opague granules, specific for adrenergic systems. The nucleus is rich in clustered chromatin, the granular endoplasmic reticulum is poorly developed, cytosomes are absent. According to their ultrastructural organization the latter correspond to small granular cells of the mammalian autonomic nervous system.  相似文献   

12.
An electron microscope study was made of the central cell and the development of the free nuclear endosperm surrounding the zygote and synergids during the first three days after pollination. The cytoplasm of the central cell, concentrated around the partially-fused polar nuclei, contains many ribosomes, mitochondria and large, dense, starch-containing plastids, some dictyosomes and lipid bodies, and long, single cisternae of rough endoplasmic reticulum (RER) that frequently terminate in whorls. Dense, core-containing microbodies are closely associated with the RER. After fertilization the cytoplasm of the 2-and 4-nucleate endosperm shows an increase in number of dictyosomes, and in amount of RER which becomes stacked in arrays of parallel cisternae. Cup-shaped plastids are associated with many long, helical polysomes. Perinuclear aggregates of dense, granular material also appear after fertilization. Granular aggregates and helical polysomes disappear after the first few divisions of the primary endosperm nucleus. During the second and third days of development there is an increase in dictyosome number and RER proliferation, and endosperm nuclei become deeply lobed. Concurrently, there is a sharp decline in the starch and lipid reserves of the central cell and elaborate transfer walls are formed at the micropylar end of the embryo sac and on the outer surface of the degenerating synergid. The transfer walls contain groups of small, membrane-bound vesicles, and are associated with large numbers of mitochondria and with the smooth endoplasmic reticulum.  相似文献   

13.
The endodermis in the needles of Pinus pinaster was examined with light and electron microscopy. The endodermis is composed of very long, radially flattened cells, filled with a large central vacuole, which contains spherical dense bodies whose concentration decreases from the ends of the cell to the middle part. They are individually surrounded by a fine granular matrix. The central vacuole is bounded by a thick tonoplast. Other small, clear vacuoles are limited by a thin tonoplast. The parietal cytoplasm contains relatively few ribosomes, long slender chloroplasts, and lipid bodies. The smooth endoplasmic reticulum is highly developed along the tangential walls and frequently connected, or apposed, to the plasma membrane. Numerous primary pit fields are seen in the radial walls which are lignified and in the tangential walls; the latter exhibit a characteristic loosening of the outer layer of the wall. The lipid bodies are connected to endoplasmic reticulum tubules. The role of the endodermis in the active transport of water inside the needle is discussed in reference to previous physiological studies. The chemical composition of the vacuolar dense bodies is as yet unknown.  相似文献   

14.
SYNOPSIS. Observations were made on the fine structure of Paramecium bursaria and its intracellular Chlorella symbionts. Emphasis was placed on the structure of the algae and structural aspects of the relationship between the organisms. The algae are surrounded by a prominent cell wall and contain a cup-shaped chloroplast which lies just beneath the plasma membrane. Within the cavity formed by the chloroplast are a large nucleus, a mitochondrion, one or more dictyosomes, and numerous ribosomes. The chloroplast itself is made up of a series of lamellar stacks each containing 2–6 or more thylakoids with a granular stroma and starch grains intercalated between the stacks. The thylakoid stacks of mature algae are frequently more compact than those of recently divided algae. A large pyrenoid is located within the base of the chloroplast. It is made up of a granular or fibrillar matrix surrounded by a shell of starch. The matrix is bisected by a stack of 2 thylakoids. Prior to the division of the chloroplast the pyrenoid regresses; pyrenoids subsequently form in the daughter chloroplasts thru condensation of the matrix material and the reappearance of a starch shell. This shell appears to be formed by the hollowing-out of starch grains already present in the chloroplast stroma. Accordingly, in this case, starch moves from the stroma to the pyrenoid. The algae are located thruout the peripheral cytoplasm of the Paramecium. Each alga is located in an individual vacuole except immediately following division of the algae when the daughter cells are temporarily located in the vacuole which harbored the parental cell. Shortly thereafter the vacuole membrane invaginates, thereby isolating the daughter algae into individual vacuoles. Degenerating symbiotic algae are seen; because these are frequently found in vacuoles with bacteria, they are presumed to be undergoing digestion. Due to the conditions of culture these algae could have been either of intracellular or extracellular origin.  相似文献   

15.
Ultrastructure and shell formation in the testaceous ameba, Lesquereusia spiralis, were investigated with both scanning and transmission electron microscopy and X-ray microanalysis. The nucleus, surrounded by a fibrous lamina, contains multiple nucleoli. The cytoplasm, containing a well developed granular endoplasmic reticulum, also contains remnants of starch granules in stages of digestion. Spherical aggregates of ribosome-like particles may be seen. Golgi complexes seem to produce both a nonordered fibrous material and an electron dense vesicle. Only the latter appears to bleb off from the Golgi complex. X-ray microanalysis demonstration of silicon in Golgi vesicles and in some dense vesicles suggests that the fibrous component of the cisternae may take up and concentrate silica to form the electron-dense component of the vesicles. Membrane-bound siliceous crystals are often seen adjacent to the Golgi, suggesting either a Golgi origin or platelet formation in vesicles after release from the Golgi complex. Both electron-dense bodies and siliceous platelets are released from the cell by a process similar to apocrine secretion and may be seen outside the cell in route to the shell during shell morphogenesis. Shell development involves fusion of electron-dense bodies to form a matrix, positioning of siliceous platelets in this matrix parallel to the shell surface, and development of a system of matrix chambers. A particulate glycoconjugate is released to the shell surface upon rupture of the matrix chamber.  相似文献   

16.
The rat ganglion nodosum was used to study chromatolysis following axon section. After fixation by aldehyde perfusion, frozen sections were incubated for enzyme activities used as markers for cytoplasmic organelles as follows: acid phosphatase for lysosomes and GERL (a Golgi-related region of smooth endoplasmic reticulum from which lysosomes appear to develop) (31–33); inosine diphosphatase for endoplasmic reticulum and Golgi apparatus; thiamine pyrophosphatase for Golgi apparatus; acetycholinesterase for Nissl substance (endoplasmic reticulum); NADH-tetra-Nitro BT reductase for mitochondria. All but the mitochondrial enzyme were studied by electron microscopy as well as light microscopy. In chromatolytic perikarya there occur disruption of the rough endoplasmic reticulum in the center of the cell and segregation of the remainder to the cell periphery. Golgi apparatus, GERL, mitochondria and lysosomes accumulate in the central region of the cell. GERL is prominent in both normal and operated perikarya. Electron microscopic images suggest that its smooth endoplasmic reticulum produces a variety of lysosomes in several ways: (a) coated vesicles that separate from the reticulum; (b) dense bodies that arise from focal areas dilated with granular or membranous material; (c) "multivesicular bodies" in which vesicles and other material are sequestered; (d) autophagic vacuoles containing endoplasmic reticulum and ribosomes, presumably derived from the Nissl material, and mitochondria. The number of autophagic vacuoles increases following operation.  相似文献   

17.
Crystalline inclusions were found in the nuclear envelope and granular endoplasmic reticulum of spinal cord oligodendroglia of the common guppy (Poecilia reticulata) and the lungfish (Polypterus enlicheri). A considerably increased incidence of these inclusions was noted in guppies with congenital and hereditary (sex-linked, recessive) lordosis. Identical crystalline inclusions were observed in protoplasmic and fibrous astrocytes, ependymal cells, and capillary endothelial cells of the spinal cord of the lordotic fish. The oligodendroglia in these fish also revealed a prominent alteration of the endoplasmic reticulum and Golgi apparatus, with the accumulation of dense (secretion?) granules and large amounts of electron-opaque material in markedly dilated sacs of the endoplasmic reticulum. The authors postulate that this alteration is caused by a genetic defect in the control mechanism governing the elaboration of this material in the lordotic guppy, with subsequent stasis and crystallization of this material.  相似文献   

18.
R.S. Sohal 《Tissue & cell》1974,6(4):719-728
The epithelium of the Malpighian tubules in the housefly is comprised of four distinct cellular types. Type I cells are characterized by the presence of intimate associations between infoldings of basal plasma membrane and mitochondria. On the luminal surface, cytoplasm is extended into microvilli which contain mitochondria. Membrane-bound vacuoles in the cytoplasm seem to progressively accumulate granular material. Type II cells have dilated canaliculi. Microvilli lack mitochondria. The Type III cell has not been reported previously in Malpighian tubules. It has very well-developed granular endoplasmic reticulum which contains intracisternal bundles of tubules. Cytoplasm contains numerous electron dense bodies. Type IV cells occur in the common duct region of the Malpighian tubules. Mitochondria do not extend into the microvilli.  相似文献   

19.
SYNOPSIS. Macrogametocytes of the coccidium Adelina tribolii Bhatia, 1937 are described from the time when they settle in the fat body of the host and form periparasitic vacuoles around them to the stage of microgametocyte occurrence and the beginning of syzygy formation.
The macrogametocyte is surrounded by a 2-layered pellicle 50 mμ thick. Its continuity is interrupted by one or several micropores 40 mμ across and 86 mμ deep.
The cytoplasm of the parasite contains numerous vesicles and lamellae of rough and smooth endoplasmic reticulum. Mitochondria of various sizes have short tubules. The macrogametocyte contains a variable number of dark bodies 1.4-2.4 μ in diameter. It also contains several vacuoles up to 1.2 μ which are covered with a 3-layered membrane and enclose a granular material.
In old macrogametocytes in syzygy multivesicular bodies develop which measure up to 2.4 by 1.6 μ. Several smaller vacuoles containing granular material are also a constituent of the electrondense basic substance of these corpuscles.
Paraglycogen granules 1.4 by 0.9 A occur in old macrogametocytes and are situated inside the vacuoles which are not bordered by a membrane. The numbers and size of these granules increase with the age of the parasite. The Golgi complex lies close to the nucleus.
The nucleus, 6-8.5 μ in diameter, is in the center of the macrogametocyte and contains a large eccentric nucleolus. The nuclear membrane is 2-layered and has many pores.  相似文献   

20.
The ovaries of the largemouth bass Micropterus salmoides, an alien and invasive species in South Africa, contain a germinal epithelium which consists of germline and somatic cells, as well as previtellogenic and late vitellogenic ovarian follicles. The ovarian follicle consists of an oocyte surrounded by follicular cells and a basal lamina; thecal cells adjacent to this lamina are covered by an extracellular matrix. In this article, we describe the Balbiani body and the polarization and ultrastructure of the cytoplasm (ooplasm) in previtellogenic oocytes. The nucleoplasm in all examined oocytes contains lampbrush chromosomes, nuclear bodies and several nucleoli near the nuclear envelope. The ultrastructure of the nucleoli is described. Numerous nuage aggregations are present in the perinuclear cytoplasm in germline cells as well as in the ooplasm. Possible roles of these aggregations are discussed. The ooplasm contains the Balbiani body, which defines the future vegetal region in early previtellogenic oocytes. It is comprised of nuage aggregations, rough endoplasmic reticulum, Golgi apparatus, mitochondria, complexes of mitochondria with nuage-like material, and lysosome-like organelles. In mid-previtellogenic oocytes, the Balbiani body surrounds the nucleus and later disperses in the ooplasm. The lysosome-like organelles fuse and transform into vesicles containing material which is highly electron dense. As a result of the fusion of the vesicles of Golgi and rough endoplasmic reticulum, the cortical alveoli arise and distribute uniformly throughout the ooplasm of late previtellogenic oocytes. During this stage, the deposition of the eggshell (zona radiata) begins. The eggshell is penetrated by canals containing microvilli and consists of the following: the internal and the external egg envelope. In the external envelope three sublayers can be distinguished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号