首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Luit Slooten  Christiaan Sybesma 《BBA》1976,449(3):565-580
Preillumination of Rhodospirillum rubrum chromatophores with strong, far-red light in the presence of phenazine methosulfate under non-phosphorylation conditions results in a selective, irreversible inactivation (typically about 70%) of photophosphorylation and of uncoupler-stimulated dark ATPase. The time course of the photoinactivation is similar to the light-on kinetics of the light-induced proton uptake in the absence of ADP. Only little photoinactivation occurs when the uncoupler carbonyl cyanide m-chlorophenyl hydrazone is present or when phenazine methosulfate is absent during the preillumination, indicating that the reaction occurs only when the membrane is energized.

Phosphorylation conditions offer a practically complete protection against the photoinactivation. Inorganic phosphate, Mg2+ or ADP do not provide a significant protection against the photoinactivation, nor does ATP. The pH-dependence of the reaction(s) leading to photoinactivation may indicate that a partial reaction of the photophosphorylation process (perhaps only a conformational change of the coupling factor) precedes the photoinactivation.  相似文献   


2.
Preillumination of Rhodospirillum rubrum chromatophores with strong, far-red light in the presence of phenazine methosulfate under non-phosphorylation conditions results in a selective, irreversible inactivation (typically about 70%) of photophosphorylation and of uncoupler-stimulated dark ATPase. The time course of the photoinactivation is similar to the light-on kinetics of the light-induced proton uptake in the absence of ADP. Only little photoinactivation occurs when the uncoupler carbonyl cyanide m-chlorophenyl hydrazone is present or when phenazine methosulfate is absent during the preillumination, indicating that the reaction occurs only when the membrane is energized. Phosphorylation conditions offer a practically complete protection against the photoinactivation. Inorganic phosphate, Mg2+ or ADP do not provide a significant protection against the photoinactivation, nor does ATP. The pH-dependence of the reaction(s) leading to photoinactivation may indicate that a partial reaction of the photophosphorylation process (perhaps only a conformational change of the coupling factor) precedes the photoinactivation.  相似文献   

3.
Chloride ion transport and its inhibition in thylakoid membranes   总被引:5,自引:0,他引:5  
Cl- translocation across energized and nonenergized thylakoid membranes was found to be inhibited by piretanide, an inhibitor of active Cl- transport in fish intestinal epithelia. Piretanide has no effect on photophosphorylation catalyzed by phenazine methosulfate or on Ca2+-dependent ATPase activity of isolated chloroplast coupling factor (CF1). Light-dependent Cl- uptake, contrary to H+ uptake, is severalfold greater at pH 8.0 than at pH 6.7.  相似文献   

4.
1. Trialkyltin, triphenyltin and diphenyleneiodonium compounds inhibited ADP-stimulated O(2) evolution by isolated pea chloroplasts in the presence of phosphate or arsenate. Tributyltin and triphenyltin were the most effective inhibitors, which suggests a highly hydrophobic site of action. Phenylmercuric acetate was a poor inhibitor of photophosphorylation, which suggests that thiol groups are not involved. 2. Triethyltin was a potent uncoupler of photophosphorylation by isolated chloroplasts in media containing Cl(-), but had little uncoupling activity when Cl(-) was replaced by NO(3) (-) or SO(4) (2-), which are inactive in the anion-hydroxide exchange. It is suggested that uncoupling by triethyltin is a result of the Cl(-)-OH(-) exchange together with a natural uniport of Cl(-). Tributyltin, triphenyltin and phenylmercuric acetate had low uncoupling activity, probably because in these compounds the uncoupling activity is partially masked by inhibitory effects. 3. At high concentrations the organotin compounds caused inhibition of electron transport uncoupled by carbonyl cyanide m-chlorophenylhydrazone or NH(4)Cl. At these high concentrations the organotin compounds may be producing a detergent-like disorganization of the membrane structure. In contrast, diphenyleneiodonium sulphate inhibited uncoupled electron transport at low concentrations; however, this inhibition is less than the inhibition of photophosphorylation, which suggests that the compound also inhibits the phosphorylation reactions as well as electron transport. 4. The effects of these compounds on basal electron transport were complex and depended on the pH of the reaction media. However, they can be explained on the basis of three actions: inhibition of the phosphorylation reactions, uncoupling and direct inhibition of electron transport. 5. The inhibition of cyclic photophosphorylation in the presence of phenazine methosulphate by diphenyleneiodonium sulphate shows that it inhibits in the region of photosystem 1.  相似文献   

5.
Dependence of nitrite reduction on electron transport chloroplasts   总被引:15,自引:13,他引:2       下载免费PDF全文
Methyl viologen and phenazine methosulfate (photosystem I electron acceptors), 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU, electron-transport inhibitor), and methylamine (photophosphorylation uncoupler) were used to study the dependence of nitrite reduction on electron transport in chloroplasts.  相似文献   

6.
ATP-driven proton fluxes across membranes of secretory organelles   总被引:5,自引:0,他引:5  
The ATP-dependent proton uptake by chromaffin granule membranes, lysosomes, and synaptosomes was examined. In synaptosomes the reaction was absolutely dependent on the presence of chloride, while in chromaffin granules chloride had a profound effect and in lysosomes only a minor effect. The presence of chloride markedly increases the rate of collapse of delta pH by carbonyl cyanide p-trifluoromethoxyphenylhydrazone in all three organelles. Ascorbate with phenazine methosulfate uncoupled the ATP-dependent proton uptake by chromaffin granules, but had no effect on lysosomes and synaptosomes. Proton uptake by submitochondrial particles was about 50-fold more sensitive to dicyclohexylcarbodiimide than the proton uptake by chromaffin granule membranes. Chromaffin granule membranes were treated with 2 M sodium bromide to inactivate the mitochondrial ATPase. The treatment caused a complete inhibition of the ATP-dependent proton uptake. Solubilization of these membranes by sodium cholate, followed by reconstitution by cholate dilution revealed the ATP-dependent proton uptake of the system. It is concluded that the genuine ATPase enzyme of chromaffin granules is a proton translocator.  相似文献   

7.
Arrhenius plots for ATP synthesis, coupled to endogenous and Phenazine methosulfate or N,N,N,N,-Tetramenthyl-1,4-Phenylene diamine-mediated photosynthetic election transport and for ATP hydrolysis were studied in Rhodospirillum rubrum chromatophores.Coupled or uncoupler induced Mg-ATPase show no discontinuity in the range tested (30°C-5°C) and they also have the same activation energy. Phenazine methosulfatecatalyzed photophosphorylation has also a single activation energy where as the endogenous reaction shows complex and ageing dependent behaviour, alternating temperature ranges having high (45.2 to 144,4 kJ·mol-1) and very low (ca 0.0 to 3.3 kJ·mol-1) activation energy.Abbreviations Bchl Bacteriochlorophyll - Ea Activation energy - FCCP Carbonyl Cyanide p. Trifluoromethoxy henyl Hydrazone - PMS phenazine methosulfate - TMPD N,N,N,N-Tetramethyl-1,4-Phenylene diamine - R Rhodospirillum  相似文献   

8.
The conditions under which an oscillatory behaviour is observed during net hydrolysis or synthesis of ATP in chromatophores of Rhodospirillum rubrum FR1 are described. In the case of ATPase the oscillations are observed at low temperature (ca. 11°C) in the dark after an initial transient behaviour. These oscillations are attenuated or disappear by the addition of an uncoupler.Oscillations are also observed during ATP synthesis. At 3°C the oscillations appear spontaneously if photophosphorylation is measured during a sufficiently long time. At 30°C the mere intercalation of a dark period also at 30°C is sufficient to trigger the oscillations in the following light period.Abbreviations Bchl Bacteriochlorophyll - FCCP carbonyl cyanide p-trifluoromethoxyphenyl hydrazone - PMS phenazine methosulfate - TMPD, N,N,N,N tetramethyl-1,4-phenylenediamine Dedicated to Prof. Dr. Gerhart Drews as a homage for his permanent example as hard worker and careful scientist and also for his remarkable human quality  相似文献   

9.
Summary ATP photophosphorylation by spinach thylakoid was examined to evaluate its use as an ATP regeneration reaction in biosynthetic reactors that consume ATP. Initial rate of cyclic photophosphorylation mediated by phenazine methosulfate was found to be 218 mole ATP/h.mg Chlorophyll. This activity was stable for over 3 months at –85°C. When phosphoryl transfer reactions were coupled to cyclic photophosphorylation, ATP was continuously regenerated by thylakoid between 14–24 times in batch reactors.  相似文献   

10.
(1) Chromatophores were preilluminated in the presence of phenazine methosulphate or diaminodurene, and without phosphorylation substrates; next they were transferred to fresh medium and assayed for light-induced proton uptake, light-induced 9-aminoacridin fluorescence quenching, and photophosphorylation. (2) Preillumination in the presence of phenazine methosulphate or diaminodurene causes an inhibition of the photophosphorylation rate. The presence of ADP + MgCl2 + phosphate, or ADP + MgCl2 + arsenate during preillumination provides full protection against this effect. (3) Preilluminated chromatophores are leaky for protons. The leak is expressed as an accelerated dark decay, and a diminished extent of succinate-supported, light-induced proton uptake. The extent of light-induced 9-aminoacridin fluorescence quenching is also diminished. (4) The proton leak can be closed by oligomycin and by dicyclohexyl carbodiimide (at concentrations similar to those used to inhibit photophosphorylation), but not by aurovertin. Closure of the proton leak results in partial restoration of the photophosphorylation rate. (5) The inhibition of phosphorylation by oligomycin or dicyclohexyl carbodiimide is time-dependent. In untreated chromatophores, the time-dependence is determined by the extent of membrane energization. In preilluminated chromatophores, the time-dependence is determined in addition by the extent to which the proton leaks have been closed. The reasons for this are briefly discussed.  相似文献   

11.
(1) Chromatophores were preilluminated in the presence of phenazine methosulphate or diaminodurene, and without phosphorylation substrates; next they were transferred to fresh medium and assayed for light-induced proton uptake, light-induced 9-aminoacridin fluorescence quenching, and photophosphorylation.(2) Preillumination in the presence of phenazine methosulphate or diaminodurene causes an inhibition of the photophosphorylation rate. The presence of ADP + MgCl2 + phosphate, or ADP + MgCl2 + arsenate during preillumination provides full protection against this effect.(3) Preilluminated chromatophores are leaky for protons. The leak is expressed as an accelerated dark decay, and a diminished extent of succinate-supported, light-induced proton uptake. The extent of light-induced 9-aminoacridin fluorescence quenching is also diminished.(4) The proton leak can be closed by oligomycin and by dicyclohexyl carbodiimide (at concentrations similar to those used to inhibit photophosphorylation), but not by aurovertin. Closure of the proton leak results in partial restoration of the photophosphorylation rate.(5) The inhibition of phosphorylation by oligomycin or dicyclohexyl carbodiimide is time-dependent. In untreated chromatophores, the time-dependence is determined by the extent of membrane energization. In preilluminated chromatophores, the time-dependence is determined in addition by the extent to which the proton leaks have been closed. The reasons for this are briefly discussed.  相似文献   

12.
13.
1. The sulphydryl reagent 2-2'dithio bis-(5-nitropyridine) (DTNP) inhibited photophosphorylation when the chloroplasts were preincubated with the reagent in the light. A maximum inhibition of about 50% was obtained in the presence of pyocyanine and MgCl 2 at 0.3 mumol DTNP per mg chlorophyll and was completed in about 40 s of preillumination. 2. Dithioerythritol, ADP plus Pi (or arsenate) and uncouplers prevented the inhibition when present during the preillumination while phloridzin, Dio-9 and discarine B were ineffective. Low concentrations of ADP or ATP afforded partial protection but other nucleotides had no effect. 3. DTNP inhibited the coupled electron transport rate to the basal level and had no effect on the uncoupled electron transport. The stimulation of proton uptake and inhibition of electron transport by ATP was prevented by DTNP. 4. The trypsin-activated but not the light- and dithioerythritol-triggered ATPase was inhibited by light preincubation of chloroplasts with DTNP. 5. Reversal of DTNP inhibition of photophosphorylation was obtained by a second preillumination in the presence of thiol groups. 6. More DTNP reacted with chloroplasts in the light than in the dark. Two mol of thione were formed in the light per mol of DTNP disappeared. 7. The results suggested that DTNP inhibition is related to the oxidation by DTNP of chloroplast vicinal dithiols probably exposed by a light-induced conformational change.  相似文献   

14.
The cytochrome content of membranes isolated from seven species of cyanobacteria was investigated in terms of conventional difference spectra, carbon monoxide difference spectra, photoaction spectra and photodissociation spectra, and by extraction of acid-labile heme followed by spectral identification. In addition, the effect of various inhibitors and activators on the oxidation of horse heart cytochrome c by the membrane was studied. Both the spectral features and the properties of the cytochrome oxidase reaction catalysed by the membranes suggested the presence of a terminal oxidase strikingly similar to mitochondrial ferrocytochrome c: oxygen oxidoreductase (EC. 1.9.3.1).Abbreviations PMS phenazine methosulfate - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - Cyt cytochrome  相似文献   

15.
Thylakoids from isolated spinach chloroplasts were frozen in the presence of various concentrations of inorganic and organic salts, amino acids and sugars and the kinetics of inactivation of cyclic photophosphorylation with phenazine methosulfate and of electron transport reactions were measured as a function of temperature.During freezing of membranes in the presence of neutral nontoxic compounds membrane damage did not occur until the eutectic temperature was reached. Then photophosphorylation became rapidly inactivated. With weakly membrane-toxic compounds there was a slow inactivation during freezing followed by rapid inactivation at the eutectic temperature. Freezing in the presence of strongly membrane-toxic compounds led to inactivation of photophosphorylation before the eutectic temperature was reached. The temperature at which eutectic crystallization occurred was dependent on the nature of the solutes present. The ratio between solute and membranes was also important: the lower the initial concentration of solutes added to membrane suspensions the lower the temperature at which eutectic solidification occurred. Some compounds such as mannitol crystallized gradually during the decrease in temperature; in this case inactivation of photophosphorylation took place parallel to the crystallization process.In contrast to photophosphorylation, electron transport reactions were not decreased during eutectic freezing in the presence of neutral membrane-protective compounds. Rather a stimulation of electron transport was observed. However, in the presence of inorganic salts or of sodium succinate, electron transport reactions were also inactivated in addition to photophosphorylation during eutectic solidification. This inactivation seems to be a salt effect and may not directly be related to the crystallization process. Various soluble enzymes and the Ca2+-dependent ATPase of thylakoids were not affected by eutectic crystallization.The results demonstrate that eutectic crystallization which may take place during freezing is a factor in membrane damage and has to be considered as a possible cause of membrane alterations in in vitro studies on freezing resistance.  相似文献   

16.
Some derivatives of phenylurea, N-phenylcarbamate, s-triazine and acylanilide inhibited the cyclic photophosphorylation of spinach chloroplasts catalyzed by phenazine methosulfate and accelerated the photosystem I-dependent electron flow estimated as the disproportionation of diphenylcarbazone. Acceleration was slightly stimulated by the simultaneous addition of methylamine. Thus, these Hill reaction inhibitors act as uncouplers of cyclic photophosphorylation as does methylamine. The inhibiting activities of the chemicals on the photoreduction of ferricyanide and on photophosphorylation had a parabolic relation to the partition coefficient in the octanol-water system of the chemicals.  相似文献   

17.
Tang  Qing-Xiu  Wei  Jia-Mian 《Photosynthetica》2001,39(1):127-129
The contribution of two components (pH and E) of the proton motive force to photosynthesis of C. reinhardtii was studied. Valinomycin, a photophosphorylation uncoupler, decreased significantly the fast phase (related mainly to the membrane electric potential) of millisecond delayed light emission (ms-DLE) of C. reinhardtii. Nigericin, another photophosphorylation uncoupler, decreased the slow phase (related mainly to the proton gradient) and partly also the fast phase of ms-DLE. Both valinomycin and nigericin decreased the net ATP content and photosynthetic rate of C. reinhardtii, but the inhibition by nigericin was stronger than that by valinomycin. Hence both components of the proton motive force contribute to photosynthesis and although the contribution of pH is larger than that of E, the latter is not negligible in photosynthesis of C. reinhardtii.  相似文献   

18.
Membrane vesicles isolated from cells of bacillus subtilis W23 accumulate manganese in the presence of an energy source. The artificial electron donor system ascorbate and phenazine methosulfate or reduced nicotinamide adenine dinucleotide and phenazine methosulfate can supply the energy for the uptake. D-Lactate in the presence or absence of phenazine methosulfate would not support manganese accumulation. Anaerobiosis, cyanide, m-chlorophenyl carbonylcyanide hydrozone, valinomycin, gramicidin, and p-hydroxy-mercuribenzoate inhibit the uptake. The inhibition by p-hydroxymercuribenzoate is prevented by excess dithiothreitol. Potassium fluoride or sodium arsenate has no effect on the uptake. The manganese transport system in the B. subtilis vesicles exhibits Michaelis-Menten kinetics with a Km of 13 muM and a Vmax of 1.7 nmol/min per mg (dry weight) of membranes. The uptake of manganese is specific and is not inhibited by 0.1 mM CaCL2 or Mgcl2.  相似文献   

19.
Kurt A. Santarius 《Planta》1984,161(6):555-561
Freezing of isolated spinach thylakoids in the presence of NaCl uncoupled photophosphorylation from electron flow and increased the permeability of the membranes to protons. Addition of ATP prior to freezing diminished membrane inactivation. On a molar basis, ATP was at least 100 times more effective in protecting thylakoids from freezing damage than low-molecularweight carbohydrates such as sucrose and glucose. The cryoprotective effectiveness of ATP was increased by Mg2+. In the absence of carbohydrates, preservation of thylakoids during freezing in 100 mM NaCl was saturated at about 1–2 mM ATP, but under these conditions membranes were not fully protected. However, in the presence of small amounts of sugars which did not significantly prevent thylakoid inactivation during freezing, ATP concentrations considerably lower than 0.5 mM caused nearly complete membrane protection. Neither ADP nor AMP could substitute for ATP. These findings indicate that cryoprotection by ATP cannot be explained by a colligative mechanism. It is suggested that ATP acts on the chloroplast coupling factor, either by modifying its conformation or by preventing its release from the membranes. The results are discussed in regard to freezing injury and resistance in vivo.Abbreviations CF1 chloroplast coupling factor - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - PMS phenazine methosulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propandiol  相似文献   

20.
ATPase activity of photosynthetic membrane fragments from the bacterium Rhodopseudomonas capsulata can be stimulated by continuous illumination under conditions of active cyclic electron flow. The activation corresponds to an increase in the maximum velocity of the reaction and does not affect the apparent Km for ATP (0.11 mM). No stimulation in the light is observed in the presence of classical uncouplers or oxidized 2,6-dichlorophenolindophenol (DCIP), which, per se, stimulate ATPase in the dark. It is demonstrated, however, that oxidized DCIP acts as an uncoupler of bacterial photophosphorylation.

The effect of light is elicited after a few minutes of preillumination, or in a much shorter time if an ADP trapping system is supplied. Activation does not occur if ADP is added during the preillumination (apparent Km for inhibition by ADP = 1 μM). The effect of ADP is not related to competitive inhibition with ATP, which can be observed at higher concentrations (apparent Ki = 0.26 mM). ADP, however, is not effective if added after some minutes of preillumination.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号