首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spontaneous unit activity recorded extracellularly from the caudate nucleus in acute experiments on cats was analyzed. A graph of the sliding mean frequency, an interspike interval histogram, correlogram, intensity function, and histogram of correlation between adjacent intervals were plotted for the spontaneous activity of each neuron. The spontaneous activity of neurons of the caudate nucleus showed considerable variability in time and its mean frequency varied for different neurons from 0.5 to 20 spikes/sec. Depending on the temporal pattern of the spikes and also on the statistical indices, spontaneous unit activity in the caudate nucleus was conventionally divided into two types: single and grouped. A switch from one type of activity to the other was observed for the same neuron. On the basis of the data as a whole it is impossible to regard the spontaneous unit activity of the caudate nucleus as a simple random (Poissonian) spike train.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 369–376, July–August, 1977.  相似文献   

2.
Unitary responses of the caudate nucleus to stimulation of various parts of it were investigated by extracellular recording. Latent periods of response discharges varied from 3.5 to 40 msec. Most neurons were excited by stimulation of the most rostral part of the head of the caudate nucleus. Irrespective of the site of stimulation, in most cases responses consisted of initial excitation in the form of one or, less frequently, two discharges followed by a period of depression of spontaneous activity. Recovery of activity took place gradually, without postinhibitory facilitation. No afterdischarges or periodic repetitions of spikes were observed after the initial response. Repetitive stimulation of the caudate nucleus showed that the neurons of this nucleus reproduce frequencies of stimulation badly above 30/sec, and under these circumstances in many cases they continued to discharge on average at a frequency of 5–15/sec. The results are examined from the standpoint of participation of the caudate nucleus in the formation of spindle activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 497–506, September–October, 1976.  相似文献   

3.
Spontaneous and evoked activity of caudate nucleus neurons was recorded extracellularly in acute experiments on cats. Different forms of potentials were found by analysis of the results. The potentials recorded belong to three types: ordinary action potentials; prepotentials or incomplete spikes differing from ordinary action potentials in their lower amplitude and slower decline, and complex discharges in which a spike of somewhat reduced amplitude is followed by a slow positive-negative wave. In the spontaneous activity prepotentials were observed both in complete action potentials and in isolation. The frequency of the complex discharges was 0.5–1 per second. The slow wave of these discharges blocked prepotential and action potential formation. The origin of these forms of potentials in neurons of the caudate nucleus is discussed and they are compared with analogous forms of potentials described for the Purkinje cells of the cerebellum.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukranian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 149–156, March–April, 1977.  相似文献   

4.
Spontaneous and evoked unit activity in response to repeated application of clicks at a frequency of 0.3–2.0 Hz in the caudate nucleus was studied by an extracellular recording technique in chronic experiments on cats. Four types of spontaneous unit activity in the caudate nucleus were distinguished. Altogether 44% of neurons tested responded by changes in spontaneous activity to clicks. Five types of responses of caudate neurons to clicks were discovered: phasic excitation, phasic inhibition, tonic activation, tonic inhibition, and mixed tonic responses; the commonest type was tonic activation. During prolonged stimulation by clicks extinction of the phasic responses was not observed. Complete or partial extinction of tonic responses in the course of frequent repetition of stimulation was observed in 33% of responding neurons. The question of possible convergence of specific and nonspecific influences on caudate neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 28–35, January–February, 1980.  相似文献   

5.
The response of caudate nucleus neurons to acoustic stimulation (a click at 0.5 Hz) was investigated during chronic experimentation in cats using intracellular techniques and reversible blockage of the thalamic centrum medianum produced by anode polarization. Having analyzed poststimulus histograms it was found that the response of phasic activation to an acoustic signal decreased, and disappeared in 52% of neurons. A reduction in the level of spontaneous activity was also observed in neurons of the caudate nucleus. The significance of a direct pathway from the thalamic centrum medianum to the caudate nucleus is discussed from the viewpoint of acoustic signal transmission to caudate nucleus neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 92–99, January–February, 1986.  相似文献   

6.
Activity of neurons of the globus pallidus was recorded extracellularly during stimulation of the caudate nucleus. It is demonstrated that background activity (BA) of most neurons of the globus pallidus is depressed under these conditions, which is regarded as a manifestation of inhibition of the investigated neurons. The period of BA depression varied in different cells from 60 to 500 msec. In some cases this period was preceded by emergence of an action potential with a latent period of 10–20 msec. In addition to inhibition of the activity of globus pallidus neurons during stimulation of the caudate nucleus, it was possible to record evoked responses of the given neurons in the form of group discharges with a latent period of 18–40 msec and single action potentials with a latent period of 50–100 msec. The neurons that reacted with a shorter latent period were localized at the lateral limit of the globus pallidus, whereas neurons with other kinds of responses were distributed in the globus pallidus comparatively evenly.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 202–209, September–October, 1969.  相似文献   

7.
In the visual cortex of unanesthetized cats, the number and frequency of discharges in response to a new stimulus differed from the subsequent responses: the first response was more intensive in 34% of the neurons, but in 30% it was inhibited. The phenomenon of short-term memory was detected in 19% of the cells: it was expressed in regeneration of the configuration of response discharges after the cessation of rhythmic stimulation. These peculiarities can be linked with functional organization of the neurons. We divided them into two groups according to their response to photic stimuli. The first group includes short-latent neurons that respond with discharges of the phasic type and that virtually or totally lack spontaneous activity. The second group consists of long-latent neurons with the tonic type of discharges and distinct spontaneous activity. In the overwhelming majority of cases, response to novelty and short-term memory were discovered in neurons of the second group. It is hypothesized that the population of neurons of the first group — having narrower afferent connections — takes part mainly in analysis of properties of a photic stimulus; the population of neurons of the second group participates in information processing at the final and highest level, on which mechanisms of memory and attention are implicated.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 6, pp. 611–617, November–December, 1970.  相似文献   

8.
Stimulation of the head of the caudate nucleus in cats anesthetized with chloralose and pentobarbital evoked spike responses of the Purkinje cells and other cerebellar cortical neurons in the paramedian lobes, lobulus simplex, and the tuber of the vermis. Phasic responses in the form of simple discharges (on account of activation of the neurons through mossy fibers) appeared mainly after a latent period of 5–12 and 14–20 msec; the latent period of responses consisting of complex discharges (on account of activation of Purkinje cells through climbing fibers) was 5–6, 9–22 msec, or more. Depending on the latent period, the spike responses differed in their rhythm of generation. In response to stimulation of the caudate nucleus with a frequency of 4–6/sec recruiting responses were found. An inhibitory pause was an invariable component of the tonic responses. During stimulation of the globus pallidus responses of the same types (phasic and tonic) appeared as during stimulation of the caudate nucleus, but they differed in the distribution of the neurons by latent period of spike responses. The minimal latent period was 4 msec. Recruiting also was observed during repetitive stimulation of the globus pallidus. During stimulation of the substantia nigra Pukinje cells activated by climbing fibers responded. Evoked complex discharges appeared after a stable latent period of 8.5±0.3 msec. Arguments are put forward regarding the role of the substantia nigra, the globus pallidus, nuclei of the inferior olive, and also the thalamic nuclei in the mechanism of caudato-cerebellar oligosynaptic and polysynaptic connections.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 375–384, July–August, 1978.  相似文献   

9.
During chronic experiments on unanesthetized cats neuronal response in the caudate nucleus to the presentation of local photic stimuli and electrical stimulation of the specific (field 17) and the association (Clare-Bishop) areas were compared. Stimulation of the Clare-Bishop area proved more effective than stimulating field 17 for neurons of the caudate nucleus; a response was produced in 47% of test neurons in comparison with 8% of units only in the specific area. Lower average values were observed for latency of neuronal response to stimulation of the Clare-Bishop area. An insignificant number of caudate nucleus neurons were activated as a result of stimulation of both cortical areas. A comparison between the response of one set of neurons to electrical cortical and visual stimulation showed that cells responding to visual stimulation were more highly activated by stimulating the Clare-Bishop area than by stimulation of field 17. This type of neuron predominated in the caudate nucleus. A discussion follows of the possible involvement of the Clare-Bishop area in shaping neuronal response to visual stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 619–627, September–October, 1985.  相似文献   

10.
Responses of single units in the reticular and ventrolateral thalamic nuclei were studied in acute experiments on curarized cats before and after intravenous injection of small doses (0.5–15 mg/kg) of pentobarbital, with simultaneous derivation of activity by two electrodes. After injection of pentobarbital, unit activity in the reticular nucleus consisted of high-frequency grouped (52.5% of 40 neurons) or continuous (30%) discharges as long as barbiturate spindles were present in the electrocorticogram. Activity of only four neurons (10%) of this nucleus was inhibited during the presence of spindles. In all other neurons of the reticular nucleus (7.5%) the character of discharges was unchanged after injection of pentobarbital. The appearance of grouped discharges, repeated several times (66.5% of 40 neurons), or blocking of activity (30%) throughout the period of spindle recording was observed in neurons of the ventrolateral nucleus. The remaining neurons of that nucleus (3.5%) did not respond to intravenous pentobarbital. The appearance of high-frequency discharges in neurons of the reticular nucleus while spindles were recorded coincided with a period of silence in neurons of the ventrolateral nucleus (58.5% of 34 pairs of neurons). High-frequency electrical stimulation of the mesencephalic reticular formation led to asynchronous activation of neurons of the ventrolateral nucleus (82%) and inhibition of unit activity in the reticular nucleus (88%).I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 517–524, September–October, 1982.  相似文献   

11.
Responses of 146 spontaneously active neurons of the reticular nucleus (R) and of 98 neurons of the ventral anterior (VA) nucleus of the thalamus to electrical stimulation of the skin of the footpads, to flashes, and to clicks were studied in experiments on cats immobilized with D-tubocurarine or myorelaxin. Stimulation of the contralateral forelimb was the most effective: 24.9% of R neurons and 31.3% of VA neurons responded to this stimulation. A response to clicks was observed in only 4.4% of R neurons and 2.4% of VA neurons. Nearly all responding neurons did so by phasic (one spike or a group of spikes) or tonic excitation. Depression of spontaneous activity was observed only in response to electrical stimulation of the skin. Depending on the site of stimulation, it was observed in 2.6–4.3% of R neurons and 1.7–2.1% of VA neurons tested. The latent period of the phasic responses of most neurons was 6–64 msec to electrical stimulation of the contralateral forelimb, 11–43 msec in response to stimulation of the hindlimb on the same side, 10–60 msec to photic and 8–60 msec to acoustic stimulation. Depending on the character of stimulation, 75.1–95.6% of R neurons and 68.7–97.6% of VA cells did not respond at all to the stimuli used. Of the total number of cells tested against the whole range of stimuli, 25% of R neurons and 47% of VA neurons responded to stimulation of different limbs, whereas 16% of R neurons and 22% of VA cells responded to stimuli of different sensory modalities. The functional role of the convergence revealed in these experiments is to inhibit (or, less frequently, to facilitate) the response of a neuron to a testing stimulus during the 40–70 msec after conditioning stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 6, pp. 563–571, November–December, 1975.  相似文献   

12.
For a statistical analysis of spontaneous activity of cortical pyramidal neurons (PN) of the cat, recordings were obtained from axons of those neurons descending in the lateral pyramidal tract in lumbar segments of the spinal cord. Spontaneous activity of all investigated PN is not random in sequence but has a complex temporal structure. Three types of spontaneous activity were distinguished by the character of distribution of the interspike intervals (ISI); the degree of grouping of the spikes into volleys separated by long intervals increases from type I to type III. Type III is more often found in PN with fast-conducting axons. As a rule the number of volleys in the spontaneous activity differed from that expected by the hypothesis of random spike sequence. In some cases repetition of volleys with an identical, or nearly identical, temporal structure was observed. It is postulated that the type of spontaneous activity is determined by the functional state of the neuron and by its morphological properties. Experiments were carried out on two groups of animals: 1) briefly anesthetized a long time before the recording was obtained, and then immobilized; 2) anesthetized with chloralose and Nembutal. The differences between the character of spontaneous PN activity were mainly in the degree of grouping of the spikes (which was greater in the second group). Significant positive correlation was found between the velocity of conduction along the PN axon and the mean ISI of the spontaneous activity.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 3–11, January–February, 1972.  相似文献   

13.
Changes of the activity of cortical neurons were studied in the posterior crucial gyrus and in the middle parts of the suprasylvian and ectosylvian gyri on cooling the brain to 18°C and below. In exact experiments it was noted that cooling the cortex to 18.8–21.8° causes a complete cessation of neuron activity. The kinetics of the change of activity under these conditions follows a definite order: first an increase of the frequency of spike discharges is observed (31–27°), then a decrease of their amplitude (at 25–22°), and finally a complete disappearance of neuron activity (at 21.8–18.8°). Discontinuation of the cooling leads to restoration of the activity of the nerve cells in inverse order: low-amplitude high-frequency discharges manifest (at 23–26°), the amplitude of the spikes increases (at 29–31°) and then the initial activity is restored (at 31–32°). The decrease of neuron activity depends on the rate of temperature drop in the cortex. The faster the cortex is cooled, the lower is the temperature at which the neurons cease to function. And conversely, slow cooling of the cortex causes an inactivation of the spike potentials at a higher temperature.S. M. Kirov Gorki State Medical Institute. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 59–63, January–February, 1970.  相似文献   

14.
The effect of electrical stimulation of the vermian cortex of the anterior lobe of the cerebellum on the activity of neurons of different portions of the fastigial nucleus was studied in acute experiments on cats under light nembutal anesthesia. Inhibitory influences of the cortex (80.6% of the reacting neurons) were manifested in total blocking or decrease in the frequency of the background activity of the neurons and were characterized by a long aftereffect and "rebound." Stimulation of the cortex also had a blocking effect on the inhibitory interaction of adjacent nuclear elements. Facilitatory influences (14.5% of the neurons) were expressed either by an increase of spontaneous discharges of the neurons or by the appearance of activity in rhythm with the stimulation. The effectiveness of cortical stimulation depended on the localization of the stimulating electrodes. Zones of maximum density of projections to a given neuron of the nucleus and convergence and divergence of influences were found in the cerebellar cortex.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziolgiya, Vol. 2, No. 3, pp. 260–268, May–June, 1970.  相似文献   

15.
Synchronized activity (spindles, augmentation response) evoked by stimulation of thalamic nonspecific, association, and specific nuclei was investigated in chronic experiments on 11 cats before and after successive destruction of the caudate nuclei. After destruction of the caudate nuclei the duration of spindle activity in the frontal cortex and subcortical formations (thalamic nuclei, globus pallidus, putamen) was reduced to only three or four oscillations. In the subcortical nuclei its amplitude fell significantly (by 50±10%); in the cortex the decrease in amplitude was smaller and in some cases was not significant. Different changes were observed in the amplitude of the augmentation response, depending on where it was recorded. In the subcortical formations it was considerably and persistently reduced (by 50±10%); in the cortex these changes were unstable in character. Unilateral destruction of the caudate nucleus inhibited synchronized activity evoked by stimulation of the thalamic nuclei on the side of the operation only. Destruction of the basal ganglia (caudate nucleus, globus pallidus, entopeduncular nucleus, and putamen) did not prevent the appearance of synchronized activity; just as after isolated destruction of the caudate nucleus, after this operation synchronized activity was simply reduced in duration and amplitude. It is suggested that the caudate nucleus exerts an ipsilateral facilitatory influence on the nonspecific system of the thalamus during the development of evoked synchronized activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 239–248, May–June, 1977.  相似文献   

16.
Spike discharges of medullary units ofRana ridibunda in response to tones of optimal frequency for the neuron, with sinusoidal amplitude modulation, was studied. Reproduction of sound modulation in unit activity was assessed by the use of phase histograms of responses corresponding to the period of modulation. Amplitude modulation was reproduced in the firing pattern of neurons of the dorsal nucleus over a wide range of modulation frequencies and carrier levels. Accentuation of small changes of amplitude for modulation frequencies of 70–150 Hz was observed in many neurons of the superior olives. The phase of the response was a linear function of modulation frequency both in the dorsal nucleus and in the superior olives. The greatest enhancement of amplitude changes corresponded to low modulation indices.Academician N. N. Andreev Acoustics Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 390–396, May–June, 1985.  相似文献   

17.
Background activity was recorded in 272 neurons of the ventrolateral thalamic nucleus before and after systemic haloperidol and droperidol injection at a cataleptic dose using intracellular techniques during chronic experiments on cats in a drowsy condition. Brief burster discharges lasting 5–50 msec and following on at a high intraburst spike rate (of 200–450 Hz) were characteristic of neuronal activity in intact animals. Regular discharges occurred at the rate of 2–2.5 Hz or occasionally 3–4 Hz in 15% of cells. Numbers of neurons with the latter activity pattern rose to 22 and 30%, respectively, following haloperidol and droperidol injection. Both irregular and prolonged (80–300 msec) regular discharges were recorded in one third of the total. A relatively low intraburst spike rate (of 60–170 Hz) was observed in 37% of cells following 10 days' haloperidol injection. These changes are thought to be produced by intensified inhibitory effects on neurons of the thalamic ventrolateral nucleus from the substantia nigra and reticular thalamic nucleus following blockade of dopaminergic and -adrenergic receptors.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 5, pp. 675–685, September–October, 1989.  相似文献   

18.
The effect of microiontophoretic application of cortisol to single neurons of the dorsal hippocampus on the character of distribution of interspike intervals in their discharges was studied in chronic experiments on rabbits. Cortisol modified the time structure of regular and rhythmic discharges of hippocampal neurons. Regularization of discharges in the form of bursting activity appeared as the result of cortisol in cells with irregular spontaneous activity. Activity of more than half of the neurons, in which bursting discharges corresponded in frequency to the theta-rhythm, was intensified as a result of microapplication of cortisol. In neurons discharging complex spikes, in which under normal conditions a phenomenon of reduction of spike amplitude was observed within each burst, no definite rule as regards changes in the time structure of the discharges could be observed after administration of the hormone. It is suggested that cortisol plays a modulating role in mechanisms of generation of spike activity by hippocampal neurons.P. K. Anokhin Research Institute of Normal Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 628–635, November–December, 1981.  相似文献   

19.
The effect of microelectrophoresis of glutamate on spontaneous activity of sensomotor cortical neurons located 80–250 µ from the point of application of glutamate was studied in cats anesthetized with pentobarbital. If glutamate was applied at distances of under 100 µ from the neurons the predominant response was one of excitation, evidently due to the direct action of the excitatory mediator. With more distant application inhibition of spontaneous activity predominated: at distances from 100 to 200 µ it was observed in 57%, and between 200 and 250 µ, in 70% of cases. Application of picrotoxin close to the neuron weakened inhibition induced by microelectrophoresis of glutamate through a neighboring microelectrode.A. A. Ukhtomskii Physiological Research Institute, A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 347–352, July–August, 1982.  相似文献   

20.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号