首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The albino-deletion complex consists of more than 37 deletions that remove an area of mouse chromosome 7 including the albino coat-color locus. Previous genetic and embryological studies with five of these deletions (C11DSD, c5FR60Hg, c4FR60Hd, c2YPSj, c6H) defined at least two genes required for normal development of the embryonic and extraembryonic ectoderm of early postimplantation embryos. A molecular genetic analysis of this region has been initiated using palb18, a genomic clone that defines the D7TM18 locus that maps to a region of chromosome 7 removed by the c11DSD deletion but not by the c5FR60Hg, c4FR60Hd, c2YPSj, or c6H deletions. palb18 was obtained by chromosomal microdissection and microcloning of the wild-type albino region. A genomic clone isolated with palb18 contains a repeat sequence localized primarily to the proximal region of the five deletions. The repeat sequence hybridizes differentially to the five deletion DNAs. The patterns of hybridization associated with these DNAs were used to define the order of the proximal breakpoints as centromere-c11DSD-c2YPSj-(c5FR60Hg-c4FR60Hd)- c6H. This order was confirmed by isolation of additional single-copy sequences. The molecular probes described here should allow for identification and isolation of the deletion breakpoints and thus provide immediate access to the distal side of the deletions where the genes affecting the development of the embryonic and extraembryonic ectoderm are located.  相似文献   

2.
A detailed embryological analysis has been undertaken on embryos carrying the c4FR60Hd-, c5FR60Hg- or c2YPSj-albino deletions of mouse chromosome 7. Embryos homozygous for the c4FR60Hd deletion are abnormal at day 7.5 of gestation. The extraembryonic ectoderm does not develop, and primitive-streak formation and mesoderm production do not occur. In contrast, extensive development of the extraembryonic ectoderm, as well as mesoderm production, are observed in the c5FR60Hg- and c2YPSj-homozygous embryos. The mesoderm does not, however, organize into somites and the neural axis does not form. The embryos are grossly abnormal by day 8.5 of development. There are two other albino deletions (c6H and c11DSD) that are known to affect the embryo around the time of gastrulation (Niswander et al. 1988), and the lethal phenotype observed for the c4FR60Hd-homozygous embryos is similar to that described for c6H-homozygous embryos, whereas the c5FR60Hg- and c2YPSj-homozygous embryos display a phenotype that is similar to c11DSD-homozygous embryos. A detailed complementation analysis using these five deletions revealed that the c5FR60Hg, c2YPSj and c11DSD deletions could partially complement the phenotype produced by the c4FR60Hd and c6H deletions in any combination. Extensive development of the extraembryonic structures and production of mesoderm occurs in the compound heterozygotes. These results suggest that the distal breakpoints of the c5FR60Hg, c2YPSj and c11DSD deletions lie more proximal than the distal breakpoints of the c4FR60Hd and c6H deletions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
E. M. Rinchik  R. R. Tonjes  D. Paul    M. D. Potter 《Genetics》1993,135(4):1107-1116
Deletion mutations at the albino (c) locus have been useful for continuing the development of fine-structure physical and functional maps of the Fes-Hbb region of mouse chromosome 7. This report describes the molecular analysis of a number of radiation-induced c deletions that, when homozygous, cause death of the embryo during preimplantation stages. The distal extent of these deletions defines a locus, pid, (preimplantation development) genetically associated with this phenotype. The proximal breakpoints of eight of these deletions were mapped with respect to the Tyr (tyrosinase; albino) gene as well as to anonymous loci within the Fah-Tyr region that are defined by the Pmv-31 viral integration site and by chromosome-microdissection clones. Rearrangements corresponding to the proximal breakpoints of two of these deletions were detected by Southern blot analysis, and a size-altered restriction fragment carrying the breakpoint of one of them was cloned. A probe derived from this deletion fusion fragment defines a locus, D7Rn6, which maps within (or distal to) the pid region, and which discriminates among the distal extents of deletions eliciting the pid phenotype. Extension of physical maps from D7Rn6 should provide access both to the pid region and to loci mapping distal to pid that are defined by N-ethyl-N-nitrosourea-induced lethal mutations.  相似文献   

4.
5.
The locus alf/hsdr-1, defined by the albino-deletion complex on mouse chromosome 7, is essential for neonatal survival. Animals homozygous for a subset of the deletions die shortly after birth due to impaired gene expression in liver parenchymal cells and kidney proximal tubular cells. Here, we describe a detailed analysis of the region containing alf/hsdr-1 by means of chromosome jumping from flanking markers. Three chromosome jumping libraries based on the restriction enzymes XmaI and SalI were constructed. Isolation of eight jumping clones distributed over 450 kb allowed more than 240 kb to be cloned in genomic lambda and cosmid libraries. Five of the probes map within the minimal genetic interval for alf/hsdr-1, which is defined by the proximal borders of the deletions c10R75M and c11DSD. The breakpoints of these deletions were precisely mapped, which allowed alf/hsdr-1 to be localized to a 310-kb interval.  相似文献   

6.
E. M. Rinchik  D. A. Carpenter    C. L. Long 《Genetics》1993,135(4):1117-1123
As part of a long-term effort to refine the physical and functional maps of the Fes-Hbb region of mouse chromosome 7, four loci [l(7)1Rn, l(7)2Rn, l(7)3Rn, l(7)4Rn] defined by N-ethyl-N-nitrosourea (ENU)-induced, prenatally lethal mutations were mapped by means of trans complementation crosses to mice carrying lethal deletions of the mouse chromosome-7 albino (c) locus. Each locus was assigned to a defined subregion of the deletion map at the distal end of the Fes-Hbb interval. Of particular use for this mapping were preimplantation-lethal deletions having distal breakpoints localized between pid and Omp. Hemizygosity or homozygosity for each of the ENU-induced lethals was found to arrest development after uterine implantation; the specific time of postimplantation death varied, and depended on both the mutation itself and on whether it was hemizygous or homozygous. Based on their map positions outside of and distal to deletions that cause death at preimplantation stages, these ENU-induced mutations identify loci, necessary for postimplantation development, that could not have been discovered by phenotypic analyses of mice homozygous for any albino deletion. The mapping of these loci to specific genetic intervals defined by deletion breakpoints suggests a number of positional-cloning strategies for the molecular isolation of these genes. Phenotypic and genetic analyses of these mutations should provide useful information on the functional composition of the corresponding segment of the human genome (perhaps human 11q13.5).  相似文献   

7.
Wines ME  Shi Y  Lindor M  Holdener BC 《Genomics》2000,68(3):322-329
The mesoderm development (mesd) functional interval is essential for primitive streak formation and mesoderm induction. Mesd is defined by overlapping albino (c) deletions on chromosome 7. We have constructed a bacterial artificial chromosome (BAC) contig that spans the mesd functional region. BAC end-sequence identifies three segments that recognize novel expressed sequences. Localization of the proximal breakpoints from Del(7)Tyr(c-3YPSd) and Del(7)Tyr(c-112K) within the contig defines a deletion interval of 310-350 kb that is essential for mesd function. Importantly, using BAC transgene rescue, we define a 75-kb mesd critical region containing at least one expressed sequence.  相似文献   

8.
The extraembryonic ectoderm development (exed) mutant phenotype was described in mice homozygous for the c(6H) deletion, a radiation-induced deletion in the tyrosinase region of mouse Chromosome 7. These mutants fail to gastrulate and die around embryonic day 8.0. Several genes including, for example, embryonic ectoderm development (eed), are deleted in the c(6H) mutants; however, the portion of the chromosome responsible for the more severe exed phenotype is localized to a 20-kb region called the "exed-critical region." To understand the genetics behind the exed phenotype, we analyzed this region in two ways. First, to determine whether the 20-kb exed-critical region alone causes the mutant phenotype, we removed it from a wild-type chromosome. The resulting mice homozygous for this deletion were viable and fertile, indicating that the 20-kb exed-critical region by itself is not sufficient to cause the phenotype when deleted. We then sequenced the 20-kb exed-critical region and no expressed exons were found. Several short matches to GenBank Expressed Sequence Tag (EST) databases were identified; however, none of these ESTs mapped to the region. Taken together, these results indicate that the exed phenotype may either be a position effect on a distal gene caused by the c(6H) breakpoint or the result of composite effects of nullizygosity of multiple genes in the deletion homozygotes.  相似文献   

9.
Inv dup(15) is the most common supernumerary marker chromosome in humans. To investigate the mechanism responsible for this frequent chromosome rearrangement, we characterized the breakpoints in 18 individuals with small inv dup(15) chromosomes [i.e., negative for the Prader-Willi (PWS)/Angelman syndrome (AS) critical region]. Since two proximal breakpoint regions (“hotspots”) for PWS/AS deletions have been previously identified with the most proximal 15q markers D15S541/S542 and S543, we hypothesized that formation of the small inv dup(15) chromosomes may involve one or both of these breakpoint hotspots. By analysis with S542, both breakpoint regions were found to be involved in approximately equal frequencies. In ten cases, the inv dup(15) was negative for S542 (Class I), indicating the breakpoint is between the centromere and the most proximal marker on chromosome 15. For the other eight cases, S542 was positive by fluorescence in situ hybridization (5/5) and/or microsatellite analysis (7/7), but S543 was negative (Class II). These two breakpoint regions appear to be the same as the two proximal breakpoints reported in the common PWS/AS deletions. To initiate cloning and sequencing of the Class II breakpoint, the gap in the yeast artificial chromosome (YAC) contig between S541/S542 and S543 was filled by screening the CEPH YAC and mega-YAC libraries. YACs 705C2 and 368H3 were found to bridge this gap, and therefore contain the more distal breakpoint region. The finding of consistent breakpoints in small inv dup(15), like that found in PWS/AS deletions, provides strong evidence for hotspots for chromosome breakage in this region. In addition, our results show that two extra copies (tetrasomy) of the region from 15cen to the euchromatic region containing S542 are present in individuals with Class II breakpoints. Since most individuals carrying a small inv dup(15) are phenotypically normal, the euchromatin region included in the small inv dup(15) chromosomes does not appear to contain genes with clinically significant dosage effects. Received: 23 May 1996 / Revised: 7 August 1996  相似文献   

10.
Complementation analyses of radiation-induced deletion mutations involving the albino (c) locus in Chromosome (Chr) 7 of the mouse have identified several loci, in addition to c, that have important roles in development. The "mesoderm-deficient" (msd) and "hepatocyte-specific developmental regulation-1" (hsdr-1) loci, which are proximal and tightly linked to c, are important in the formation of mesoderm and in the regulation of liver- and kidney-specific induction of various enzymes and proteins, respectively. Cloning deletion-breakpoint-fusion fragments caused by lethal albino deletions that genetically define the extents of the msd and hsdr-1 loci is one way of generating molecular probes for studying the gene(s) involved in these phenotypes. The distal breakpoints of five such deletions were positioned on a long-range (PFGE) map of approximately 1.7 Mb of wild-type DNA surrounding the c, D7Was12, and Emv-23 loci. In addition, the distal breakpoints of two viable albino deletions, which remove part of the tyrosinase gene and extend distally, were localized in the vicinity of the lethal deletion breakpoints. Therefore, the viable deletions can be exploited to generate additional DNA probes that should facilitate the isolation of breakpoint clones from chromosomes carrying lethal deletions defining hsdr-1 and msd.  相似文献   

11.
The albino deletion complex in the mouse represents 37 overlapping chromosomal deficiencies that have been arranged into at least twelve complementation groups. Many of the deletions cover regions of chromosome 7 that contain genes necessary for early embryonic development. The work reported here concentrates on two of these deletions (c6H, c11DSD), both of which were known to be lethal around the time of gastrulation when homozygous. A detailed embryological analysis has revealed distinct differences in the lethal phenotype associated with the c6H and c11DSD deletions. c6H homozygous embryos are grossly abnormal at day 7.5 of gestation, whereas c11DSD homozygous embryos appear abnormal at day 8.5 of gestation. There is no development of the extraembryonic ectoderm in c6H homozygotes, whereas extensive development of this tissue type occurs in c11DSD homozygotes. The visceral endoderm is abnormally shaped and the parietal endoderm appears to be overproduced in c6H homozygotes; these structures are not affected in c11DSD homozygotes. The embryonic ectoderm is runted in both types of embryo and it is not possible to obtain homozygous embryo-derived stem-cell lines for either deletion. Mesoderm formation occurs in the c11DSD but not in the c6H homozygotes. The c11DSD deletion chromosome complements the c6H chromosome in that the lethal phenotype of the compound heterozygote is similar to that of the c11DSD homozygote. These results suggest that a gene(s) necessary for normal development of the extraembryonic ectoderm is present in the c11DSD but deficient in the c6H deletion chromosome.  相似文献   

12.
Jacobsen syndrome is caused by segmental aneusomy for the distal end of the long arm of chromosome 11. Typical features include mild to moderate psychomotor retardation, trigonocephaly, facial dysmorphism, cardiac defects, and thrombocytopenia, though none of these features are invariably present. To define the critical regions responsible for these abnormalities, we studied 17 individuals with de novo terminal deletions of 11q. The patients were characterized in a loss-of-heterozygosity analysis using polymorphic dinucleotide repeats. The breakpoints in the complete two-generation families were localized with an average resolution of 3.9 cM. Eight patients with the largest deletions extending from 11q23.3 to 11qter have breakpoints, between D11S924 and D11S1341. This cytogenetic region accounts for the majority of 11q patients and may be related to the FRA11B fragile site in 11q23.3. One patient with a small terminal deletion distal to D11S1351 had facial dysmorphism, cardiac defects, and thrombocytopenia, suggesting that the genes responsible for these features may lie distal to D11S1351. Twelve of 15 patients with deletion breakpoints as far distal as D11S1345 had trigonocephaly, while patients with deletions distal to D11S912 did not, suggesting that, if hemizygosity for a single gene is responsible for this dysmorphic feature, the gene may lie distal to D11S1345 and proximal to D11S912.  相似文献   

13.
To identify by reverse genetics genes on the short arm of human chromosome 7 expected to be involved in the regulation of human craniofacial and limb development, we have set up a human mouse somatic cell hybrid panel that divides 7p into 9 fragments. The breakpoints are defined by deletions or translocations involving one chromosome 7 in the cells of the human cell fusion partners. Particularly densely covered with these cytogenetic anchor points is the proximal area of 7p within and around 7p13. The number of cytogenetic mapping points within proximal 7p could be increased by four, using two diploid human cell lines with small interstitial deletions in this region for dosage studies. We used Southern blots of this panel to assign to 7q or subregions of 7p more than 300 arbitrary DNA probes or genes that provide reference points for physical mapping of 7p. Three reciprocal translocations with one of the breakpoints in 7p13 mark the location of a gene involved in Greig cephalopolysyndactyly syndrome. To define an area in which we could identify candidates for this developmental gene, we established a macrorestriction map using probes flanking the putative gene region. The Greig translocations were found to be located within a 630-kb NotI restriction fragment.  相似文献   

14.
Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.  相似文献   

15.
16.
Low-copy repeats (LCRs) are genomic features that affect chromosome stability and can produce disease-associated rearrangements. We describe members of three families with deletions in 10q22.3-q23.31, a region harboring a complex set of LCRs, and demonstrate that rearrangements in this region are associated with behavioral and neurodevelopmental abnormalities, including cognitive impairment, autism, hyperactivity, and possibly psychiatric disease. Fine mapping of the deletions in members of all three families by use of a custom 10q oligonucleotide array-based comparative genomic hybridization (NimbleGen) and polymerase chain reaction-based methods demonstrated a different deletion in each family. In one proband, the deletion breakpoints are associated with DNA fragments containing noncontiguous sequences of chromosome 10, whereas, in the other two families, the breakpoints are within paralogous LCRs, removing approximately 7.2 Mb and 32 genes. Our data provide evidence that the 10q22-q23 genomic region harbors one or more genes important for cognitive and behavioral development and that recurrent deletions affecting this interval define a novel genomic disorder.  相似文献   

17.
Genetic analysis of radiation-induced deletion mutations involving the chromosome 7 albino (c) locus has expanded the functional map of this 6 to 11-cM region of the mouse genome. To generate one of many points of molecular access necessary for intensifying the analysis of the genes and phenotypes associated with this particular complex of deletions, we have cloned an endogenous ecotropic leukemia provirus (Emv-23), known to be closely linked to c, along with its flanking chromosome 7 sequences. A unique-sequence probe (23.3), derived from a region immediately 5' to the proviral integration site, was found to map less than 0.5 cM from c in a standard backcross analysis. Southern blot analysis of DNAs from animals carrying homozygous or overlapping albino deletions demonstrated that the 23.3 probe was deleted in several relatively small c-region deletions. The deletion mapping of the 23.3 probe places the Emv-23 locus between c and Mod-2, just proximal to a region important for male fertility and juvenile fitness. Mapping of this locus also provides a refinement of the genetic/deletion map for several mutations within this deletion complex.  相似文献   

18.
We have isolated 14 new DNA markers from the human Xpter-Xp21 region distal to the Duchenne muscular dystrophy gene by targeted cloning, employing two somatic cell hybrids containing this region as their sole human material. High-resolution physical localization of these markers within this region was obtained by hybridization to two mapping panels consisting of DNA from patients carrying various translocations and deletions in distal Xp. Five markers were assigned to the pseudoautosomal region where their position on the long-range map of this region was further determined by pulsed-field gel electrophoresis. The other nine markers map to the X-specific region. Informative TaqI restriction fragment length polymorphisms were observed for four loci. One of these represents a region-specific low-copy repeated element. These 14 new markers represent useful tools for the understanding of distal Xp deletion and translocation mechanisms and for the positional cloning of disease genes in the region.  相似文献   

19.
Children with constitutional deletions of chromosome 11p13 suffer from aniridia, genitourinary malformations, and mental retardation and are predisposed to develop bilateral Wilms tumor (the WAGR syndrome). The critical region for these defects has been narrowed to a segment of band 11p13 between the catalase and the beta-follicle-stimulating hormone genes. In this report, we have cloned the endpoints from a WAGR patient whose large cytogenetic deletion, del(11)(p14.3::p13), does not include the catalase gene. The deletion was characterized using DNA polymorphisms and found to originate in the paternally derived chromosome 11. The distal endpoint was identified as a rearrangement of locus D11S21 in conventional Southern blots of the patient's genomic DNA, but was not detected in leukocyte DNA from either parent or in sperm DNA from the father. The proximal endpoint was isolated by cloning the junction fragment and was mapped in relation to other markers and breakpoints. It defines a new locus in 11p13-delta J, which is close to the Wilms tumor gene and the breakpoint cluster region (TCL2) of the frequent t(11;14)(p13;q11) translocation in acute T-cell leukemia. An unusual concentration of base pair substitutions was discovered at delta J, in which 9 of 44 restriction sites tested (greater than 20%) vary in the population. This property makes delta J one of the most polymorphic loci on chromosome 11 and may reflect an underlying instability that contributed to the original mutation. The breakpoint extends the genetic map of this region and provides a useful marker for linkage studies and the analysis of allelic segregation in tumor cells.  相似文献   

20.
Velo-cardio-facial syndrome (VCFS) is the most common microdeletion syndrome in humans. It occurs with an estimated frequency of 1 in 4, 000 live births. Most cases occur sporadically, indicating that the deletion is recurrent in the population. More than 90% of patients with VCFS and a 22q11 deletion have a similar 3-Mb hemizygous deletion, suggesting that sequences at the breakpoints confer susceptibility to rearrangements. To define the region containing the chromosome breakpoints, we constructed an 8-kb-resolution physical map. We identified a low-copy repeat in the vicinity of both breakpoints. A set of genetic markers were integrated into the physical map to determine whether the deletions occur within the repeat. Haplotype analysis with genetic markers that flank the repeats showed that most patients with VCFS had deletion breakpoints in the repeat. Within the repeat is a 200-kb duplication of sequences, including a tandem repeat of genes/pseudogenes, surrounding the breakpoints. The genes in the repeat are GGT, BCRL, V7-rel, POM121-like, and GGT-rel. Physical mapping and genomic fingerprint analysis showed that the repeats are virtually identical in the 200-kb region, suggesting that the deletion is mediated by homologous recombination. Examination of two three-generation families showed that meiotic intrachromosomal recombination mediated the deletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号